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Tiger got to hunt, 
Bird got to fly; 
Man got to sit and wonder, "Why, why, why?" 

Tiger got to sleep, 
Bird got to land; 
Man got to tell himself he understand. 

- Kurt Vonnegut, Jr., Cat's Cradle 

- Japanese proverb 
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CHAPTER I 

Introduction 

1.1 Background and Motivation 

As sensing technology evolves, sensor costs decrease and sensing capability im­

proves; hence, sensors are being installed in an increasing number of applications. 

Advances in data storage and computing capabilities also facilitate better and faster 

processing of sensor data. With the amount of sensor data and computing power 

available, new ways to process this data can therefore be developed to detect system 

faults. 

Fault detection is essential to many disciplines [1, 2]. In aerospace engineering, 

structural health monitoring [3] and operational modal analysis [4] focus on detecting 

and localizing faults in wings, fuselages, and control surfaces. In manufacturing, 

process monitoring [5] and machine health monitoring [6, 7, 8] consider detection and 

characterization of anomalies in parts, machine tools, and material handling systems. 

In civil engineering, detection of cracks in bridges and buildings is widely researched 

[9, 10]. Mechanical engineering applications include engine fault detection [11] and 

pump fault detection [12]. 

Validated fault detection techniques provide multiple benefits. Downtime and 

faulty operation can be reduced by implementing fast, reliable fault detection. Main­

tenance costs and scrap can also be mitigated through fault detection. Furthermore, 
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health and safety risks can be alleviated through automated fault detection, especially 

if it is applied to large structures that contain human occupants, such as aircraft and 

buildings. 

In some applications, an analytical model for the system under study may be 

known [13]. In this case, model-based fault detection techniques may provide more 

accurate fault detection than output-only fault detection techniques [14]. However, 

an analytical model for the system under study is often unavailable or uncertain. In 

fact, output measurement data may be the only information known about the system. 

Furthermore, the excitation that induces the output data may be uncontrollable, un-

commandable, unknown, or corrupted by noise and disturbances. Hence, techniques 

that use only output data for fault detection are needed. 

1.2 Existing Techniques for Output-Only Fault Detection 

1.2.1 Statistical Process Control 

Statistical process control (SPC) techniques provide one way to detect faults by 

examining deviations of the output measurements from their nominal values. First, a 

control chart [15] is constructed using the output data. A Shewhart control chart [16] 

examines the raw output data, a cumulative sum (CUSUM) control chart [17] exam­

ines data that has been normalized by the mean and variance of all the data collected, 

and an exponentially-weighted moving average (EWMA) control chart [18] examines 

averaged data values in which the relative weight of each data point exponentially 

decreases with time. Second, a set of heuristic rules, such as the Westinghouse Elec­

tric Rules [19], is used to determine whether a fault has occurred because the data 

in the control chart is out-of-control. The Westinghouse Electric Rules state that the 

data in the control chart is out-of-control if (1) any point falls outside the 3a limit, 

(2) two out of three consecutive points fall outside the 2a limit, (3) four out of five 

2 
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consecutive points fall outside the a limit, or (4) at least nine consecutive points fall 

on the same side of fx, where /i and a are the mean and variance of the data in the 

control chart, respectively. 

1.2.2 Pattern Recognition 

Pattern recognition approaches for fault detection are typically divided into three 

main stages [20]. First, key characteristics, or features, are extracted from the output 

data. Second, a subset of the most relevant features are selected. Third, the values 

of the chosen features are combined together to produce an overall estimate of the 

condition of the system. A fault is detected if the estimated system condition does 

not correspond to a normal system condition. 

Many features can be extracted from data, such as the mean and variance of 

the data [21]. Because some features provide better insight into whether a fault 

has occurred than others, a large number of time-domain, frequency-domain, and 

time-frequency-domain features are extracted from the data to ensure that no key 

information is lost [22]. Furthermore, application-specific features can be defined 

based on expert knowledge or observation of the data [23]. 

Fischer's criterion [24] is typically used to rank the relative importance of various 

features, but improved classification can be obtained by selecting the set of features 

that best span the feature space [25]. Hence, clustering and principal component 

analysis (PC A) can be applied [26]. However, because PC A separates the feature 

space using a linear combination of features, it is sub-optimal if the feature clusters 

cannot be separated using linear partitions. Hence, heuristic graph search techniques 

such as sequential forward selection have been developed to obtain a near-optimal set 

of features [27]. 

To classify a set of features, machine learning techniques are used to define bound­

aries between clusters of features. Boundaries can be linear (for example, using 

3 
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Fisher's linear discriminant) or nonlinear (for example, using a support vector ma­

chine) [28] and are typically obtained by training using supervised learning techniques 

[29]. 

1.2.3 System Identification 

Time-domain identification approaches can be used to estimate the parameters 

of a time-series model from the excitation to the output measurements [30, 14]. For 

example, estimates of the parameters a\,...,an,bo,...,bn of the linear time-series 

model 

y(k) = aiy(k — 1) H \- any(k - n) + b0u(k) H 1- bnu(k - n) 

can be used to detect faults, where y(k) denotes the output measurement(s) at time 

step k and u(k) denotes the excitation at time step k. For output-only identification, 

u(k) is assumed to be a realization of a white random process [32]. 

Eigenstructure estimation approaches identify a linear state space model for the 

system [34, 35, 36]. For example, estimates of A and C of 

x(k + l) = Ax(k) +ni(k), 

y{k) = Cx{k) + n2(k), 

can be used to detect faults, where x(k) is the state of the system and ni(k) and n2(k) 

are white and uncorrelated. A related approach, which uses blind source separation 

to estimate the coefficients of the linear relationship between y(k) and x(k), can also 

be applied [37]. These approaches typically assume that the excitation is a realization 

of a white random process [33]. 

4 
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Frequency-domain identification techniques can be used to estimate the resonant 

frequencies and mode shapes of a structure [39]. For example, Fourier transforms can 

be used to compute the frequency spectrum of each output measurement, and modal 

characteristics inferred from the output spectra can be used to detect faults [38]. 

As with time-domain and eigenstructure estimation approaches, frequency-domain 

identification techniques typically assume that the excitation is a realization of a 

white random process [40]. 

In structural health monitoring, output-only system identification techniques are 

known as Operational Modal Analysis (OMA) [4]. In OMA, the dynamics between 

the excitation and output (s) are typically estimated, but the dynamics between sets 

of output measurements (transmissibilities) can also be estimated [41, 42]. If the 

excitation is sinusoidal, a frequency-domain approach can be used to identify the 

harmonic frequencies of the structure [43]. 

1.2.4 Limitations of Existing Output-Only Fault Detection Approaches 

SPC techniques require training or expert knowledge to determine the threshold a 

[44]. Furthermore, knowledge of the spectrum of the output data is required to design 

an SPC approach to minimize the number of missed detections and false alarms [15]. 

Finally, SPC techniques cannot detect changes in the dynamics of the system that do 

not result in a change in one of the first few statistical moments of the output data. 

Feature extraction requires expert knowledge to define key metrics that charac­

terize the data. Machine learning requires a large amount of training data and may 

need significant computational time to complete the training and classification steps 

[45, 46]. Furthermore, training must be completed for each excitation, and unex­

pected changes in the excitation can cause the output data to be incorrectly classified 

[47]. Finally, artificial neural networks (ANNs) require expert knowledge and/or ex­

tensive testing to determine the optimal number of layers, number of nodes, and types 

5 
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of activation functions in each layer [48]. 

Although many system identification approaches assume that the excitation signal 

is a realization of a white random process, this assumption cannot be verified unless 

the excitation can be measured. If the excitation signal is not a realization of a 

white random process, consistent parameter estimates can be achieved only for very 

specialized cases, namely, the white equation error and finite impulse response cases 

[49, 50]. Furthermore, disturbances and nonzero initial conditions can corrupt the 

output measurements and result in inaccurate parameter estimates [51, 52]. 

1.3 Research Objectives 

The research presented in this thesis has three main objectives. First, we want to 

develop a technique to detect an abrupt change in a noisy signal in real-time. This 

technique should provide comparable or better performance than existing approaches 

in terms of detection speed, number of missed detections, and number of false alarms. 

Second, we want to define key features and choose a feature selection and classification 

approach that is able to classify multiple states accurately while while requiring short 

training and classification time. This technique should provide better performance 

than a benchmark approach using principal component analysis and a multi-layer 

perceptron. Third, we want to define a technique to detect changes in the dynamics 

of a linear system. This technique should require no knowledge or measurement of the 

excitation, allow an arbitrary nonzero and unknown initial system state, and degrade 

gracefully in the presence of output noise. Furthermore, this technique should be 

applicable to systems that have colored, non-unit-rank excitation as well as colored, 

correlated output noise. 

6 
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1.4 Outline of the Dissertation 

The remainder of this dissertation is organized as follows. 

Chapter II explains the AMWPD algorithm for real-time abrupt change detection. 

The AMWPD algorithm calculates the mean and variance of the data in adjacent 

moving windows, compares the means of the data in the two windows, and returns 

a fault if the mean of the data in the most recent window differs from the mean of 

the data in the older window by more than &cr0id> where a0\^ denotes the standard 

deviation of the data in the older window and k > 0 is chosen by experience or data-

based training. We demonstrate techniques that reduce the number of operations 

required to compute the mean and variance of the data in the two windows, thereby 

reducing the computational requirements of the proposed algorithm. For a grinder-

dresser crash detection application, the AMWPD algorithm is compared with existing 

techniques and shown to provide comparable detection speed and fewer false alarms. 

This chapter is based on work described in [53]. 

Chapter III discusses techniques for shaving tool wear classification (including 

tooth breakage detection) using indirect sensing. Feature extraction, feature dimen­

sion reduction, and classification are considered. PCA and modified tabu search 

(mTS) with long-term memory are compared for feature dimension reduction. A 

multi-layer perceptron (MLP) ANN is compared with a probabilistic neural network 

(PNN) for classification. The approach using modified TS and a PNN (mTS + PNN) 

is shown to achieve more accurate classification in less time than the approach using 

PCA and an MLP. This chapter is based on work described in [54, 55]. 

Chapter IV defines a pseudo transfer function (PTF) from one output measure­

ment to another. The single-input-single-output (SISO) PTF order and relative de­

gree are characterized, and proofs and numerical examples are provided to justify the 

results. SISO PTFs are estimated consistently in the presence of output noise using 

quadratically-constrained least squares (QCLS), a technique described in [50]. Fur-

7. 
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thermore, SISO PTFs are used to detect faults in a simulated example. This chapter 

is based on work described in [56, 57, 58]. 

Chapter V extends the work in Chapter IV by introducing multiple-input-multiple-

output (MIMO) PTFs for systems with multiple excitations. Conditions for which 

a MIMO PTF is defined are presented, as well as an upper bound on the order of 

each entry of the MIMO PTF. A //-Markov MIMO QCLS algorithm is developed and 

used to estimate the MIMO PTF consistently in the presence of output noise. This 

chapter is based on work described in [57, 59]. 

Finally, Chapter VI presents conclusions, contributions, and future work. 

8 
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CHAPTER II 

Real-Time Peak Detection in a Noisy Signal 

2.1 Introduction 

Recent research has focused on improving monitoring and control techniques for 

processes, tools, and machines to make manufacturing less expensive, more efficient, 

and safer. To accomplish this task, sensors can be used to collect information about 

the condition of the monitored system. Researchers have also developed techniques 

for processing sensor signals to extract features that highlight the system condition. 

Generally, the feature extraction methods can be classified as time domain, frequency 

domain, time-frequency domain, or model-based approaches [21]. 

Once characteristic features are extracted from the signal, various methods can be 

used to decide when the change in a feature or set of features necessitates maintenance 

action. Some decision-making strategies include thresholding [60], statistical process 

control (SPC) [15], and clustering based on pattern recognition [29]. 

Although this serial flow of information from sensor data to extracted features 

to decisions has provided significant improvements in manufacturing quality and ef­

ficiency, "more development work is needed to 'ruggedize' monitoring algorithms so 

that they can be used reliably on the shop floor" [21]. For example, although time-

frequency signal processing using wavelets provides insight into the system condition 

(see [61] and [62]), the associated computational requirements makes this approach 

9 
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infeasible for some embedded applications. Furthermore, the computational time 

required for time-frequency signal processing can limit its application in real-time 

monitoring, where processing time must be minimized. 

Hence, we develop an algorithm for peak detection that includes signal processing 

and decision-making to minimize computational requirements and computing time. 

The proposed algorithm is applied to the signal collected from a horsepower sensor on 

a dresser spindle motor to detect contact between a dresser and grinder in real-time. If 

contact is detected, the proposed algorithm provides feedback to stop machine motion 

before damage occurs. The performance of the proposed algorithm is compared with 

other contact detection methods and shown to provide fewer false alarms than existing 

approaches. 

The rest of this chapter is organized as follows. Section 2.2 provides details on 

existing signal processing and decision-making methods. Section 2.3 explains the 

proposed algorithm. Section 2.4 discusses implementation of the proposed algorithm 

in an industrial production environment and compares the results of the proposed 

algorithm with existing techniques for peak detection. Finally, Section 2.5 presents a 

summary and some future research directions. 

2.2 Signal Processing and Decision-Making Methods 

Time domain signal processing methods extract statistical characteristics from 

the signal; these characteristics are then used to determine whether a change in the 

signal has occurred [63]. The main advantage of time domain techniques is that they 

generally require less computational time than frequency domain or time-frequency 

domain signal processing methods. However, time domain methods may be sensitive 

to noise and do not provide as much insight into the process dynamics as other types 

of signal processing methods. 

Frequency domain signal processing methods extract information about the spec-

10 
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trum of the sensor data using Discrete Fourier Transforms (DFTs) or Hilbert Trans­

forms [64]. Key spectral content is reflected in characteristic features such as the 

NA4 index [23]. Frequency domain techniques require more computational time than 

time domain techniques but may provide additional insight into the properties of the 

signal, for example, by estimating natural frequencies. However, frequency domain 

methods do not provide an estimate of the time when a specific frequency component 

begins or ends, which could help users pinpoint the time when a change in the system 

characteristics began. 

Time-frequency domain signal processing methods extract features present in both 

the time and frequency domains using short-time Fourier transforms (STFT) [65], 

wavelet transforms [66], or a time-frequency kernel such as the Wigner-Ville [67] 

or Choi-Williams [68] distribution. Time-frequency domain methods describe the 

signal's characteristics more completely than the time domain or frequency domain 

methods, but time-frequency domain methods require significant computational time. 

Hence, it is often infeasible to apply time-frequency signal processing methods for 

embedded, real-time fault detection. 

Model-based signal processing methods build a model for the nominal system dy­

namics using expert knowledge or input-output data [13]. Sensor data is then used to 

construct a model for the present system dynamics; the present system dynamics are 

compared to the nominal dynamics and a fault is detected if the estimated dynamics 

differ significantly from the nominal dynamics. ARMA model residuals [69], parity 

equations [70], virtual sensing [71], and parameter estimation [72] are some model-

based signal processing methods. For systems with unknown nonlinear dynamics, 

construction of a model for the system dynamics can be time-consuming and compu­

tationally intensive, which limits the applicability of model-based signal processing 

techniques in embedded, real-time fault detection. 

Decision making methods for abrupt change detection are either parametric or 

11 
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non-parametric [73]. Parametric change detection techniques consider changes in es­

timated parameters or features, while non-parametric change detection techniques 

consider changes in parameters and model structure simultaneously. If sensor noise is 

known or estimated, parametric approaches are more accurate than non-parametric 

approaches [74]. However, a Shewhart or control chart [15], which is a type of para­

metric change detection technique, cannot differentiate between abrupt and gradual 

changes. If the sensor output gradually changes over time due to degradation or 

process changes [75], a control chart may falsely indicate that an abrupt change has 

occurred. Hence, a moving window, such as an Exponentially Weighted Moving Av­

erage (EWMA), a cumulative sum (CUSUM), or a finite moving average control chart 

[19], can be introduced so that only abrupt changes in the signal are detected. How­

ever, these algorithms compare a single incoming data point with the baseline data 

to determine whether an abrupt change has occurred. If the incoming data is noisy, 

direct application of these methods can yield many false alarms. 

2.3 Description of Proposed Algorithm 

In the proposed Adjacent Moving Window Peak Detection (AMWPD) algorithm, 

we assume that no abrupt changes occur in the signal until two adjacent first-in-first-

out buffers are filled with data. Hence, we compare the new data in the small buffer 

SB with the old data in the large buffer LB. For K e {L, S}, the mean of the data 

in buffer K at iteration i is given by HKB% , while the standard deviation of the data in 

buffer K at iteration i is given by aKBt. We detect an abrupt change if nsBt ^> i^LBl • 

We note that the presence of LB reduces the sensitivity of the proposed approach to 

false detection of gradual changes. We apply the proposed approach to a sample time 

series in Figure 2.1. 

For each iteration i of the AMWPD algorithm, the newest sensor measurement y 

is assigned to first element of SB, while the last element of SB in iteration i — 1 is 

12 
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Figure 2.1: Illustration of the two adjacent buffers in the Adjacent Moving Window 
Peak Detection (AMWPD) algorithm. 

assigned to the first element of LB. Hence, 

SBi[l] = y (2.1) 

and 

LBi[l] = SBi-tlNse], (2.2) 

where the number in square brackets denotes the element of the associated buffer, 

NRB is the number of data points in buffer KB, and K G {L, S}. 

NSB and NLB are chosen to maximize detection accuracy and robustness. If NSB 

is too small, the algorithm will not be sufficiently robust to noise; conversely, if NSB 

is too large, the algorithm will take too long to detect an abrupt change in the signal. 

To ensure that NSB and NLB are properly chosen, we move a test data set through 

a single buffer and choose NSB to be the length of the shortest buffer whose mean 

and variance do not change significantly as the data is passed through the buffer. We 

choose NLB > NSB but small enough to reduce computation time. The choices of 

NSB and NLB for the dresser contact application are discussed in Section 2.4.2. 

13 



www.manaraa.com

Once both buffers are full with data, HsBt, ^LBt, and a LB, are given by 

NKB 

HKB% = T ^ - E KB*\& (2-3) 
N«* 9 = i 

and 

NKB 

^KB% = ̂ ~ E iKB^\ ~ HKB? , (2-4) 
9=1 

where g e { l NKB} and K e {L, S}. 

When a new data point y enters SB, (2.3) implies that, for time i + 1, 

, NSB-1 

5=1 

For time i, (2.3) also implies that 

NSB-1 

)- ^SBM=,SBt-^f^. (2.6) 
NSB ^ ^ B 

Substituting (2.6) into (2.5), we have 

y - SBJJNSB} 
HSBZ+X = 77 + VSBr (2.7) 

MSB 

Similarly, from (2.2), we have 

SBJWSB] ~ LBt[NLB] . . 
VLB1+1 = rj r \XLB%- (/•»; 

J»LB 

Hence, the number of operations to calculate the mean is reduced from NAB-1 addi­

tions and 1 division to 1 addition, 1 subtraction, and 1 division. 

The standard deviation of the large buffer at time z+1 is also updated dynamically. 

14 
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For time i + 1, (2.4) implies 

2 _(SBi[NSB}-»LBt+1)
2 , (Z^r1 LBM ~ ^LBI+1)

2 

^ + 1 - ^ + ^ • (2-9) 

For time i, (2.4) also implies 

Next, we assume HLB1+1 ~ /^LB,- This approximation is justified because we assume 

that the mean of the signal in LB does not change significantly as each new data 

point enters SB. Hence, (2.9) and (2.10) imply 

aLNi+1 = 77— + <rLBt- (2.11) 
1 v LB 

Hence, the number of operations required to calculate the standard deviation is re­

duced from NLB subtractions, NLB multiplications, NLB-1 additions, 1 division, and 

1 square root to 3 subtractions, 2 multiplications, 1 addition, 1 division, and 1 square 

root. 

We set a threshold so that, if the mean of SB is significantly larger than the mean 

of LB, an abrupt change is detected. The abrupt change detection criterion is given 

by 

Peak = < 
0, HSBX+1 < VLBZ+1 + kaLBt+1, 

(2.12) 
1, else, 

where k is the user-defined threshold that determines how large the change must be in 

order to be detected. If the data is normally distributed, k « 3 is a common threshold 

choice based on the size of the confidence interval needed to describe normal process 
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variations [76, 77]. The choice of k for the dresser contact detection application is 

further discussed in Section 2.4.2. 

A flowchart of the AMWPD algorithm is shown in Figure 2.2. Although the 

AMWPD algorithm is used to detect changes in mean, a similar approach could be 

used to detect changes in variance. 

Detect = 0 
i = l . j = l .k = l 
SB= empty (NSB) 
LB = empty (Nm) 

SB[l]=y 
i = i + l 

LBtNta + N S J - k+ 1] =LB[Nm -NSB - k] 
k = k + l 

Detect = I 

LB[l] = SB[N a] 
k = l 

LB[i - NJB - k + 1] = LB[i - NSB - k] 
k = k + l 

^r~ 
S B [ N S B - J + 1 ] = S B [ N S B - J ] 

1=1+1 

SB[i-j + l] = SB[i-j] 

J = J + 1 

Figure 2.2: Flowchart of the AMWPD algorithm. 

2.4 Industrial Application 

2.4.1 Application Description 

Grinding is an abrasive finishing process that can produce smooth surfaces with 

tight geometric tolerances while maintaining high material removal rates [78]. To 

facilitate grinding, the dressing process removes dull grains, exposes new, sharp grains, 

and re-shapes the grinding wheel. Because improper dressing can cause the grinding 

wheel to fail catastrophically, the dressing process must be carefully monitored. 

Recent advances in numerical control, probing, and sensing have improved the 
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dressing process [79, 80]. However, proposed techniques for detecting dresser contact 

using Acoustic Emission (AE) sensors are prohibitively expensive for shop-floor im­

plementations and require extremely high data sampling rates [81, 82]. Hence, other 

sensors and processing techniques must be investigated to detect dresser-grinder con­

tact. 

Approach Contact Normal Dress 

Figure 2.3: A schematic drawing of the dressing process. 

We apply the AMWPD algorithm to detect contact between a cylindrical dresser 

and 4-axis cylindrical grinder. The AMWPD algorithm interfaces with the machine 

controller to immediately stop grinder motion if improper contact occurs between 

the grinder and dresser to ensure that catastrophic damage is avoided. A schematic 

drawing of the proper dressing process is shown in Figure 2.3, while a drawing of 

some of the possible dresser failure modes is shown in Figure 2.4. 

Grinder 
Wheel 

Failure Mode 1: 
Dresser Shaft 

Bending 

Failure Mode 2: 
Dresser Wheel 

Cracking 

Figure 2.4: Two possible dresser failure modes. 

A picture of the grinder where the data collection, data processing, and decision 
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making system is installed is shown in Figure 2.5. Data from a horsepower sensor 

is used to determine whether contact between the dresser and grinder has occurred. 

Because the horsepower sensor only needs access to the power cables on the spindle 

motor, this sensor is very unintrusive to the process [79]. Other types of sensors used 

for dresser contact detection, like AE [81] or force [83] sensors, must be installed very 

close to or embedded in the grinding wheel and therefore may adversely affect the 

grinding process. Furthermore, the horsepower sensor is less expensive and requires a 

much lower sampling rate than other sensor types. Hence, although AE sensors can 

detect grinder-dresser contact faster than horsepower sensors [84], we use a horsepower 

sensor to detect grinder-dresser contact. 

Figure 2.5: Picture of the grinder system where the AMWPD algorithm is applied. 

The hardware for this system consists of an analog input module, a solid-state 

relay output module, and a real-time controller. To avoid aliasing, the signal from 
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k 
0.55 
0.45 
0.65 
0.55 
0.55 
0.55 

NLB 

500 
500 
500 
250 
500 
500 

NSB 

100 
100 
100 
100 
50 
150 

Missed Detections 
0/21 
0/21 
4/21 
1/21 
0/21 
3/21 

False Alarms 
0 
2 
0 
0 
10 
0 

Table 2.1: Dependence of the AMWPD algorithm on NSB, NLB, and k. 

the horsepower sensor is sampled at 100 Hz (the sensor has a time constant of 0.05 

seconds). The AMWPD algorithm is embedded to facilitate real-time operation. If 

contact is detected, the output module closes the solid state relay. The machine 

control, which monitors the solid state relay, stops the grinder motion if the solid 

state relay is closed. The real-time controller is connected to the local intranet so 

that engineers can check the performance and output of the algorithm. 

2.4.2 Application Resul ts 

We evaluate the performance of the AMWPD algorithm for various choices of 

NSB, NLB, and k in Table 2.1. To obtain the results in Table 2.1, we apply the 

AMWPD algorithm to analyze signals collected from a dressing process in which 

the grinder contacts the dresser 21 times. By increasing k and holding all other 

parameters constant, we see in Table 2.1 that the number of false alarms decreases 

while the number of missed detections increases. 

Hence, the parameter choices in the first row of Table 2.1 provide sufficiently low 

rates of missed detections and false alarms. With this choice of parameters, a peak 

is detected less than 0.5 seconds after it occurs, as shown in Figure 2.6. 

As Figure 2.7 illustrates, the motion of the grinder is stopped less than 0.55 

seconds after contact occurs. During this time, the grinding wheel does not feed far 

enough into the dresser to damage the dresser or grinder wheel. 
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Raw Dresser Data 

25S 

Figure 2.6: Illustration of the peak detection time of the AMWPD algorithm. 

Actual HP 

Threshold 

Measured HP 

Timeline (seconds) 

Basic Result; 

From the time that the contact occurs 
until the time that the machine stops: 

1) Less than 0.55 seconds pass 
2) The grinder wheel has not fed into the 

dresser far enough to damage either the 
grinder or the dresser 

Figure 2.7: Schematic drawing characterizing the time required for the grinder to stop 
moving after the grinding wheel has touched the dresser. 

2.4.3 Algorithm Comparison 

We compare the speed and accuracy of the AMWPD algorithm with the perfor­

mance of existing techniques for abrupt change detection. We use the raw dresser 

horsepower data shown in Figure 2.8. We note that two large peaks are present in 
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the signal. 

Rat Dresser Dala 

22D 240 

Figure 2.8: Unfiltered dresser horsepower data. 

When the data is passed through a third-order Butterworth filter with a cutoff 

frequency of 2 Hz, we see that the signal actually contains 4 peaks, as shown in Figure 

2.9. In the raw data signal in Figure 2.9, the two small peaks cannot be distinguished 

from the signal baseline due to the overwhelming presence of noise in the signal. 

Hence, these two small peaks could be missed by a peak detection algorithm. 

2 H i Lnrpass FHtaed Data 
- i r-

,2 large peaks. 

2 small peaks 

/ \ 

lU^feMMVHM^ 

_i i_ 
2 2 D 2 4 O 2 G 0 2 a O 3 0 O 3 2 0 3 4 O 3 6 0 3 e O 

TMe(s) 

Figure 2.9: Filtered dresser horsepower data. 

The AMWPD algorithm is compared with an online Shewhart control chart [16, 
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Algorithm 

AMWPD Alg. 

Shewhart 

EWMA 

A 

0.025 

k 

0.55 

4 

4 

NSB 

100 

NLB 

500 

500 

500 

Missed Detections 

0/4 

0/4 

0/4 

False Alarms 

0 

17 

9 

Avg. detection delay (s) 

0.47 

0.78 

0.22 

Table 2.2: Comparison of AMWPD algorithm with online Shewhart control chart. 

85] as well as an online EWMA control chart [18]. The EWMA control chart compares 

each new data point with a weighted average of past data, where recent data has 

higher relative weight than old data. Because the weighted average smooths the old 

data, the EWMA control chart is more robust to noise than the Shewhart control 

chart. Furthermore, the EWMA control chart gives more importance to the most 

recent measurements, which provides faster detection speed than the Shewhart control 

chart. 

We use the data in Figure 2.8 to compare the performance of the AMWPD al­

gorithm with the performance of the Shewhart and EWMA detection methods. The 

optimal values of k and A for the Shewhart and EWMA detection methods are ob­

tained by exhaustively searching for the sets of parameters that provide the minimum 

number of false alarms and missed detections. Using the optimal parameter values, 

the performance of the three algorithms is compared in Table 2.2. 

2.4.4 Discussion 

Based on the results shown in Table 2.2, the AMWPD algorithm provides fewer 

false alarms (Type II errors) than the Shewhart and EWMA algorithms. Although all 

the algorithms can be tuned to provide zero missed detections (Type I errors), only 

the AMWPD algorithm simultaneously provides zero missed detections and zero false 

alarms. Furthermore, although the EWMA algorithm provides a faster response time 

than the AMWPD algorithm, the AMWPD algorithm has a faster response time than 

the Shewhart algorithm. 

We note that A and k are typically chosen to be 0.2 and 3, respectively, to provide 

22 



www.manaraa.com

minimal false alarm and missed detection rates [18, 19]. However, Table 2.2 shows 

that the false alarm and missed detection rates for this application are minimized by 

unconventional choices of A and k. The nominal A and k may differ from expected 

values because the sensor noise may not be white, normally distributed, or stationary. 

2.5 Conclusions and Future Work 

This chapter has presented a new algorithm for real-time dresser contact detection 

using a horsepower sensor connected to the dresser spindle motor of an industrial 

grinder. The proposed AMWPD algorithm provides advantages over existing methods 

for abrupt change detection in terms of detection speed, reliability, and robustness. 

Furthermore, the AMWPD algorithm has been implemented and validated for dresser 

contact detection on an industrial grinding machine. A picture of the interface to 

the AMWPD algorithm, which is embedded using a Lab VIEW real-time operating 

system, is provided in Figure 2.10. 

The next phase of this research will be to leverage the results of the AMWPD 

algorithm and hardware interface. Hence, the robustness of the AMWPD algorithm 

will be improved and automatic methods for choosing k, NLB, and NSB will be 

investigated so that the AMWPD algorithm can be applied to prevent crashes on 

similar grinding machines. Also, additional work will be done to determine how 

well the AMWPD algorithm can detect peaks in signals from other manufacturing 

applications such as drilling, milling, and turning. 
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RWMMMhp 

Figure 2.10: User interface for embedded AMWPD algorithm. 
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CHAPTER III 

Multi-State Classification Using Heuristic Feature 

Selection 

3.1 Introduction 

Shaving is a gear finishing process which reduces gear tooth surface roughness 

and dimensional inaccuracies [86]. During the shaving process, the tool engages the 

workpiece so that the tool teeth mesh with the workpiece teeth and the tool drives the 

rotation of the workpiece. Because of a small angle between the tool and workpiece 

axes of rotation, the sides of the tool teeth press against the sides of the workpiece 

teeth as the tool and workpiece rotate. The sides of the tool teeth contain many 

sharp ridges, as shown in Figure 3.1, which remove workpiece material through the 

cutting and forging processes. Although researchers have explored various aspects of 

the shaving process, including offline estimation of shaving cutting tool wear using 

optical inspection techniques [87], mathematical modeling of the shaving process to 

reduce machining errors [88], and new cutter designs to improve workpiece surface 

finish [89], only one previous work addresses shaving tool wear classification using 

indirect measurement techniques [54]. However, the approach in [54] provides low 

classification accuracy and does not consider the evolution of tool wear for a single 

tool; instead, different tools with different wear states are considered. 
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Shaving tool wear classification using indirect measurements, such as accelerom-

eter signals, is difficult for various reasons. First, the cutting force, which has been 

shown to be correlated with tool wear in turning, drilling, and milling [90], is very 

small for the shaving process. Second, since multiple tool and workpiece teeth are 

engaged at any instant during the shaving process, the change in the cutting force 

due to the breakage or wear of a single ridge on a single tooth is extremely small. 

Third, the indirect sensor signal may only contain a small contribution from the cut­

ting force due to the long transmission path from the cutting force to the sensor. 

However, because shaving tools are very expensive, fast and accurate shaving tool 

wear classification can provide significant maintenance cost savings. 

In this chapter, we employ a standard approach for tool wear classification, which 

consists of data collection, feature extraction, feature selection, and classification [20]. 

We extract many well-known features in the time, frequency, and joint time-frequency 

domains, including root mean square [21], NA4 index [91], and time-frequency en­

tropy [92]. Because the key features required for shaving tool wear classification are 

unknown, we also define new features, discussed in Section 3.2.3, which are designed 

to improve the classification result. To select key features and obtain a classification 

result, we employ a recently-developed heuristic technique [93]. For some applica­

tions, the heuristic technique developed in [93] has been shown to have higher accu­

racy and lower computational cost than conventional approaches, such as sequential 
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forward/backward selection [27] and genetic algorithms [94]. However, the heuristic 

technique developed in [93] has never been applied to estimate tool wear condition. 

The remainder of this chapter is organized as follows. Section 3.2 explains the 

methods and techniques used to conduct the experiments and subsequent data anal­

ysis. Section 3.3 provides our results and discussion on tool tooth breakage detection 

as well as tooth wear estimation. Finally, Section 3.4 provides conclusions. 

3.2 Methodology 

3.2.1 Experimental Setup 

We conducted two experiments on shaving tool wear classification. First, we 

consider 5 different shaving cutter tools. Of these 5 tools, one tool is freshly re-ground. 

Another tool has an intermediate wear condition (given a part-based re-grind schedule 

to re-grind after X workpieces are machined, this tool has machined X/2 workpieces). 

A third tool has an advanced wear condition (it has machined X workpieces since the 

previous re-grind). The fourth and fifth tools have multiple broken teeth. 

Second, we conduct a run-to-failure test on a freshly sharpened shaving tool with 

no broken teeth. Data is collected during the processing of three workpieces at the 

beginning of every shift, which corresponds to an interval of about 200 workpieces cut 

between measurements. As teeth break, the measurement interval is reduced so that 

there are only about 50 workpieces cut between measurements. The run-to-failure 

test is terminated when the tool has 11 total broken teeth and 3 broken teeth adjacent 

to each other (as shown in Figure 3.2). 

Three-axis accelerometers are installed in locations 1 and 2 on the shaving machine 

shown in Figure 3.3. Accelerometers were chosen for this application because they are 

simple to install, do not affect the process under study, and are relatively inexpensive. 

Furthermore, accelerometers have been shown to provide good sensitivity when used 
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Figure 3.2: Shaving tool with broken teeth, 

for gearbox CM [95]. 

Figure 3.3: Accelerometer locations on machine. 

The shaving process, which lasts roughly 30 seconds, can be separated into three 

key steps, or "cuts." During the first cut, the shaving cutting tool rotates clockwise 

and engages the workpiece. During the second cut, the shaving cutting tool rotates 

counter-clockwise and feeds into the workpiece. During the third cut, the shaving 

cutting tool rotates clockwise, performs a finishing operation, and retracts from the 

workpiece. Accelerometer data is sampled at 25 kHz throughout the shaving process. 
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3.2.2 Data Pre-Processing 

A total of 6 time series are obtained for each shaving cutting cycle (one time series 

for each axis of each accelerometer). A sample of one time series is shown in Figure 

3.4. 

Figure 3.4: Sample accelerometer data from shaving one workpiece. 

As labeled in Figure 3.4, the time series is separated into three "cuts." To es­

timate tool condition, the data collected during one cut in Figure 3.4 is examined 

independently from the data collected during another cut. Hence, data from Cut 2 

is only compared to data from Cut 2, not data from Cut 1 or Cut 3. This procedure 

ensures that only data collected under the same cutting conditions is compared. 

We only present the results of analysis of data from Cut 2 in this study. Data 

from Cut 2 is chosen because, unlike Cut 1 and Cut 3, Cut 2 does not involve any 

disengagement of the tool and workpiece. Note that analysis of the data from Cut 

1 or Cut 3 does not yield better classification results than analysis of the data from 

Cut 2. 

3.2.3 Feature Extraction 

We extract the 18 metrics listed in Table 3.1 from each segment of data from Cut 

2. Since we use two 3-axis accelerometers to collect vibration data, a feature consists 

of a metric extracted from data from one axis of one accelerometer. Hence, we extract 
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T i m e D o m a i n 

Mean 

P P V (Peak-to-Peak Value) 

RMS (Root Mean Square) 

CF (Crest Factor) 

Kurtosis 

ModKurt (Modified Kurtosis) 

RecSk (Rectified Skewness) 

Entropy 

Freq. D o m a i n 

MF1 (Mag. of Meshing Freq.) 

MF2 ( 1 s t Overtone of MF1) 

MF3 ( 2 n d Overtone of MF1) 

MF4 ( 3 r d Overtone of MF1) 

SumMFl (Sideband Mag. of MF1) 

SumMF2 (Sideband Mag. of MF2) 

SumMF3 (Sideband Mag. of MF3) 

SumMF4 (Sideband Mag. of MF4) 

Time-Freq. D o m a i n 

EtrpSTFT (Entropy of STFT) 

EtrpCW (Entropy of Choi-Williams Kernel) 

EtrpWavelet (Entropy of Wavelet Kernel) 

Table 3.1: Variables used for breakage detection and tool condition estimation. 

a total of 108 features (18 metrics, 3 axes, and 2 sensors) from the vibration data. 

The feature labeling convention is Metric/Axis/Sensor. For example, the feature 

RMS/Y/2 corresponds to the Root Mean Square of data collected from the Y-axis 

of Sensor 2. 

Definitions of many of the metrics in Table 3.1 are provided in [21]. For complete­

ness, we provide definitions of these metrics. Let {x(k)}l
k=1 denote a time series of 

measurement data. Then the mean of x is given by 

^ y 5 > ( « ) , (3-1) 
' i = i 

the peak-to-peak value of x is given by 

PPV = max(x(i)) - min(x(i)), 
i i 

the root mean square (or standard deviation) of x is given by 

j £ (x(x) - n)\ (3.3) 

30 

(3.2) 

RMS 
\ 



www.manaraa.com

the kurtosis of x is given by 

Kur 
RMS* 

(3-4) 

and the entropy of x is given by 

Entropy = — ')j Prob(a:(^))log(Prob(x(i))). (3.5) 
i = i 

The sideband magnitude of the iVth harmonic of the meshing frequency SumMFN 

quantifies the noise in the frequency domain data near the meshing frequency and its 

overtones. Examining the FFT of the data from Cut 2, shown in Figure 3.5, we see 

that the magnitude of the sidebands near the meshing frequency and its overtones is 

larger if the tool is broken. 

a> 
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O 
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1000O 

a> 
8000 

=J 6000 

"H 
TO 40OO 

2000 
500 1000 150O 2000 

Frequency 
2500 3000 

Figure 3.5: FFT of data from new tool (top) and broken tool (bottom). 

To obtain an expression for SumMFN, we let 

Xk = ^2x{j)e -¥i* (3.6) 
3=1 
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where Xk is the discrete Fourier transform (DFT) of x at frequency k, i2 = — 1, and 

k = 0 , 1 , . . . , I - 1. We define 

K,N = {v. 0 < \v - NM\ < 0.5NM}, (3.7) 

where M is the meshing frequency, N = 1,2,..., and ! ) G l . Then 

SumMFN = J2 WXk\l (3-8) 
fceAwv 

where ||-|| denotes the Euclidean norm. 

Modified kurtosis attempts to provide a more accurate estimate of the peakedness 

of a bi-modal distribution than standard kurtosis (which is based on a unimodal, 

symmetric distribution). The modified kurtosis of x is given by 

ModKurt = ^ ± J K (3.9) 

where, for * G {+, —}, 

K* ^ E ^ * ( x ( f ^ , (3.10) 

J+±{j:x(j)>fi}c{l,...,l}, (3.11) 

and 

J-±J%n{l,...,l}. (3.12) 

Because the shaving process consists of periodic impacts between the shaving cutting 

tool and workpiece gear, the accelerometer data exhibit a sinusoidal trend. Hence, 
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the data histogram is bi-modal, where one mode corresponds to data collected during 

meshing and the other mode corresponds to data collected during transitions between 

meshing. Figure 3.6 shows how the histogram of the accelerometer signal changes as 

the tool wear increases. 

c ( 
3.409 !• 

o tool -1 
c J 1 

}^| - ^ | k 
-2 -1 © t 2 

Amplitude 

Figure 3.6: Histogram of data from new tool (top) and severely worn tool (bottom). 

3.2.4 Feature Selection and Tool Wear Classification 

3.2.4.1 Feature dimension reduction and classification using principal 

component analysis and a multi-layer perceptron 

Because of the large number of features extracted and the inability for a single 

feature to correctly and reliably classify the tool wear state, we consider combining 

multiple features together to achieve a better classification result. We consider reduc­

tion of the dimension of the feature space using principal component analysis (PCA), 

which extracts key dimensions from the feature space [96], and classification using a 

multi-layer perceptron (MLP) type of artificial neural network (ANN). We call this 

the PCA + MLP approach. 

To explain PCA, let I be the number of data sets collected and let r be the number 

of features extracted from each data set. For j e { 1 , . . . , r } , we define the ,7th feature 

JkJk 
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vector 

A 
9j = 

9i0) 

9iV) 

G R , (3.13) 

where gj(k) is the value of feature j associated with data set k, and k € { 1 , . . . , / } . 

Then we define 

A± 

9l 

T 
9r 

(3.14) 

The singular value decomposition [97] of A is given by 

A = WEVT, (3.15) 

where the columns of W are the eigenvectors of AAT and E is a diagonal matrix 

with nonnegative diagonal entries. Arranging the diagonal entries of E in descending 

order, the reduced-dimension representation Are^ is constructed by selecting the first 

1 < q < r singular vectors of A so that 

Aed = W$:qtl:q]A. (3.16) 

Details on the choice of q for the tool wear classification example are provided in 

Section 3.3.1. 

A sample of a two-dimensional case in which PC A provides feature dimension 

reduction is shown in Figure 3.7, where the two input features xl and x2 can be 

combined into the single output feature pel without losing the ability to differentiate 

between the two classes (dots and circles). 
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Figure 3.7: Illustration of PC A for feature dimension reduction. 

We consider the MLP because of the success it has achieved in previous classifi­

cation applications [98]. The MLP architecture consists of a feed-forward ANN with 

three layers, shown in Figure 3.8. The first (input) layer of the MLP inputs the prin­

cipal components extracted using PCA, while the third (output) layer outputs the 

classification result. From testing, we achieved the best classification performance 

when the second (hidden) layer contains 27 neurons. Each neuron in the second layer 

has a tan-sigmoid activation function, while the neuron in the third layer has a linear 

activation function [29]. 

Input Layer 
Hidden 
Layer 

Output 
Layer 

Principal 
Component 1 

Principal 
Component 2 

Principal 
Component 3 

Figure 3.8: Multi-layer perceptron artificial neural network structure used in shaving 
tool wear classification. 
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Back-propagation is used to train the MLP network to fix the values of the weights 

between the layers. Hence, we divided the data into training and testing groups. To 

improve the accuracy of the weights, we generated additional training data sets by 

constructing a moving window, as shown in Figure 3.9, that has the same length 

as the amount of time required for the shaving cutting tool to rotate once. Then 

the moving window is applied to the center of the data in Cut 2. By advancing the 

moving window through a single data set in increments of 0.1 s, 14 separate data sets 

can be generated. 

r 
window 1 

-2 

-4 

'TTBjrwff^ l^^yi^^ yil^iJL^i^jy^^ i ^ ^ g ^ L ^ 
V I I V ! 

-VX- 1 " 

window 2 
, , i i 

7.2 7.4 
Time (Sec) 

7.6 7.8 

Figure 3.9: Moving windows to increase the amount of training data. 

3.2.4.2 Feature selection and classification using modified tabu search 

and a probabilistic neural network 

We also consider modified tabu search with long-term memory (mTS). The long-

term memory provides advantages over existing approaches for heuristic feature se­

lection, such as sequential forward selection [27], sequential forward floating selection 

[99], and tabu search with a short-term memory [100]. First, unlike TS with short-

term memory, mTS does not require training to determine the optimal memory length. 

Second, the long-term memory helps to reduce the probability of the TS converging to 

a premature local optima, a problem for sequential selection techniques. An overview 

36 



www.manaraa.com

of the proposed feature selection approach using mTS is shown in Figure 3.10. 

1100 

Figure 3.10: Overview of proposed tabu search with long-term memory (mTS). 

We use a probabilistic neural network (PNN) to classify the tool condition ap­

proach. A PNN, originally proposed in [101], is chosen instead of a back-propagation 

neural network because a PNN requires less training time and is analytically tractable 

[102]. The PNN contains an input layer, pattern layer, summation layer, and output 

layer, as shown in Figure 3.11. Since the number of layers in the PNN architecture is 

fixed and all the synaptic weights are directly assigned using training samples, train­

ing can be completed in a single epoch without requiring subsequent error correction. 

Furthermore, a PNN converges to a Bayesian classifier given sufficient training data 

[101]. 

In the training stage, a set of NL data samples {Xi, X2,..., XNL} is used to teach 

the PNN. Each input sample has m dimensions and each dimension corresponds to a 
T 

(i) JJ) 
1 x 2 

selected feature. We write Xj = Ji) xr' xs' ••• xfh! , where j e {1,2,..., NL}. 

The pattern layer has NL nodes and the synaptic weight between the j t h neuron in 

the pattern layer and the ith component of the input vector is the value of the ith 
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Input 
Layer 

X* \ xi 

v-x 

Pattern 
Layer 

Summation 
Layer 

Output 
Layer 

Figure 3.11: Structure of a probabilistic neural network (PNN). 

component of the j t h training sample, to^ = xf\ The summation layer has Nc nodes, 

where Nc is the number of classes. The synaptic weight between the kth neuron of 

the summation layer and the j t h neuron of the pattern layer is given by 

w 
(S) = 

k,j 

1, Xj £ class k, 

0, else. 
(3.17) 

The synaptic weight between the output neuron and the kth neuron in the summation 

layer is given by w\ fe = 1. Using these conventions, a PNN is trained to achieve zero 

error in classifying the training samples. 

After training, a test set of JV^ data samples, which do not belong to the training 

set, are used to evaluate the classification accuracy of the PNN. When a test sample 
T 

is input into the PNN, the output of the j t h activation X* — x 
(*) „(*) Xn 
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function in the pattern layer is 

fa = e ^ , (3.18) 

where Oj is a smoothing parameter. Hence, pattern layer neurons with weight vectors 

different from the input vector X* output values near zero, while neurons with weight 

vectors similar to X* output values near one. For each class, the summation layer 

combines and normalizes the outputs of the pattern layer to produce a vector of 

probabilities. The output of the kth neuron in the summation layer is given by 

TNL W{S)6-, 2LJJ=I
 wk,j(Pj , 0 1 M 

2^j=i wk,j 

In the output layer, the outputs of the summation layer are compared and the label 

corresponding to the class with the maximum probability 

t/(*} =a rgmax ipk (3.20) 
k 

is chosen as the output of the PNN. If y^ equals the true class label y^ that cor­

responds to X*, then the input sample has been correctly classified. Classification 

accuracy is defined as the percentage of correctly classified samples out of all iVT test 

samples. 

3.3 Results and Discussion 

3.3.1 Classification of 5 Different Tools Using the PC A + MLP Approach 

We see from Figure 3.12 that a single feature can be used to differentiate wear 

condition 4 (a tool with multiple broken teeth) from the other 3 wear conditions (tools 

with no broken teeth, but various amounts of wear). However, Figure 3.12 also shows 
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that it is difficult to differentiate between the wear conditions of unbroken tools. 

20 r 

15 

^ 10 

5 
5 
II 

2 3 
Tool Condition 

4 

Figure 3.12: Dependence of a single feature on the tool condition. 

To consider multiple features and improve the classification accuracy using PCA, 

we first normalize the feature vectors to have zero mean and unity variance. Then we 

compute the contribution rate and cumulative contribution rate of each eigenvalue of 

AAT. As shown in Figure 3.13, the contribution rate decreases and the cumulative 

contribution rate increases as the principal component index increases. Both trends 

are consistent with expected trends for PCA. Since the cumulative contribution rate 

of the first 7 principal components is greater than 90% we use the first 7 principal 

components as inputs into the MLP. 

We see from Figure 3.14(A) that the clusters in the MLP training data set are 

closely-packed and easily-differentiable. Figure 3.14(B) shows that the clusters in the 

MLP testing data set are also closely-packed and easily-differentiable. Furthermore, 

by comparing Figure 3.14(A) with Figure 3.14(B), we see that the boundaries used 

to classify the training data set can also be used to classify the testing data set. 

Using the 7 principal components from the training data set as inputs to the MLP, 

the training goal of the MLP (a mean squared error < 10-5) is achieved in 12 iterations 

using the Levenberg-Marquardt algorithm [103]. After training, the performance of 

the trained MLP is tested using the testing data set. Figure 3.15 shows that all the 

testing samples are correctly identified and that the 4 different tool wear conditions 

40 



www.manaraa.com

d8x=7(CCR=0.90234 
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Figure 3.13: Contribution and cumulative contribution rate curves of principal com­
ponents. 

can be correctly classified using multiple features. 

3.3.2 Run-To-Failure Test: Tooth Breakage Detection Using the mTS + 

P N N Approach 

During shaving, tools with at least one broken tooth can deteriorate workpiece 

quality and increase scrap. We investigate whether the proposed technique can be 

applied to detect the tool tooth breakage after proper training. For tooth breakage 

detection, the run-to-failure data is divided into two classes, shown in Figure 3.16, 

which provides the entire history of a single feature (CF/Y/1). The first class includes 

all the data from when the tool has zero broken teeth. The second class includes all 

the data from when the tool has at least one broken tooth. We randomly choose 50% 

of the data from each class for training; we use the remaining data for testing. Using 

the testing data, we evaluate how accurately we can distinguish between unbroken 

and broken tools using a single feature. Table 3.2 shows the 6 features that pro­

vide classification accuracy greater than 90%. Note that 4 of these features include 
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Figure 3.14: Combinations of the 1st, 2nd, and 4 th principal components for the train­
ing set (A), and the testing set (B). 

SumMFN, while the remaining features are extracted in the time-frequency domain 

using a wavelet distribution. 

We also use the testing data to evaluate how accurately we can distinguish between 

unbroken and broken tools using the features extracted from a single sensor. Table 3.3 

shows that we can achieve 99.92% classification accuracy using 12 features from Sensor 

1 and 99.82% classification accuracy using 23 features from Sensor 2. Therefore, if 

only a single sensor can be used to detect breakage, Sensor 1 should be used because 

42 



www.manaraa.com

MSE=0.QO13651 

i 

111 

2 3 
Target Condition 

Figure 3.15: Test of PC A + MLP classification result. 
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Figure 3.16: Division of the CF/Y/1 data into two classes - unbroken (1) and broken 
(2). 

it provides higher classification accuracy using fewer features. 

Finally, we use the testing data to evaluate how accurately we can distinguish 

between unbroken and broken tools using data from both sensors. Table 3.4 shows 

that we can achieve 99.95% classification accuracy using 17 features. 
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Feature Name 
SumMFl/X/1 

EtrpWavelet/X/2 
EtrpWavelet/Z/2 

SumMFl/X/2 
SumMFS/Y/l 
SumMFl/Z/1 

Accuracy (%) 
94.37 
93.53 
92.81 
91.25 
90.88 
90.19 

Table 3.2: Breakage detection results using a single feature. 

Sensor 1 Only (99 
CF/Y/l 

Etrp/Y/1 
EtrpCW/Y/1 

EtrpSTFT/Z/1 
EtrpWavelet/X/1 

Kur/Y/1 

92 % Accuracy) 
PPV/Y/1 

RecSk/Y/1 
SumMFl/X/1 
SumMFl/Y/1 
SumMFl/Z/1 
SumMF2/Z/l 

Sensor 2 Only (99.82 % Accuracy) 
CF/Z/2 EtrpWavelet/Z/2 MF2/Y/2 RecSk/X/2 

Etrp/X/2 Kur/Y/2 MF2/Z/2 RMS/Y/2 
Etrp/Y/2 Kur/Z/2 MF3/Y/2 SumMFl/Y/2 

EtrpCW/X/2 MF1/X/2 MFA/X/2 SumMFl/Z/2 
EtrpSTFT/X/2 MF1/Y/2 MF4/Z/2 SumMF3/X/2 

EtrpWavelet/X/2 MF2/X/2 PPV/Y/2 

Table 3.3: Best features for breakage detection using a single sensor. 

Both Sensors (99.95 % Accuracy) 
Etrp/Y/2 MF1/Z/2 RecSk/Y/2 

EtrpCW/X/2 MF2/Y/2 RMS/X/1 
EtrpCW/Y/1 MF3/Y/1 SumMFl/X/1 

EtrpSTFT/Z/2 MF3/Z/2 SumMFl/Z/1 
Kur/Y/1 MFA/X/2 SumMF2/Z/l 
Kur/Y/2 PPV/Y/2 

Table 3.4: Best features for breakage detection using both sensors. 
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3.3.3 Run-to-Failure Test: Tooth Wear Condition Estimation Using the 

mTS + P N N Approach 

We also investigate whether the proposed technique can be applied to estimate 

the wear condition of the shaving tool after proper training. We divide the data 

into four classes (normal, worn, broken, and severely broken), as shown in Figure 

3.17, which provides the entire history of the feature CF/Y/1. The "normal" class 

includes all data collected before 12,000 workpieces have been cut, since this is the 

manufacturer's specification for the tool regrind interval. The "worn" class includes 

all data collected after 12,000 workpieces have been cut and before any teeth have 

broken. The "broken" class includes all data collected after one tooth has broken but 

before multiple adjacent teeth have broken. The "severely broken" class includes all 

data collected after at least two adjacent teeth have broken. After collecting the data, 

we apply the procedure described in Section 3.3.2 to classify the data. For training, 

we randomly choose 50% of the data from each of the 4 classes; we use the remaining 

data for testing. 

2 4 6 8 10 
Number of Parts 4 

x 10 

Figure 3.17: Division of the CF/Y/1 data into 4 classes - normal (1), worn (2), broken 
(3), and severely broken (4). 

Using the testing data, we evaluate how accurately we can identify the tool con­

dition using a single feature. Table 3.5 shows the 4 features that provide the highest 
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Feature Name 
EtrpWavelet/Z/2 
EtrpWavelet/X/2 

SumMFl/X/1 
SumMFl/X/2 

Accuracy (%) 
80.44 
79.38 
77.84 
74.55 

Table 3.5: Tool condition estimation results using a single feature. 

Sensor 1 
CF/Y/1 

EtrpSTFT/Y/1 
EtrpSTFT/Z/1 

EtrpWavelet/X/1 
Kur/Z/1 
MF1/X/1 
MF1/Y/1 

Only (97.69% Accuracy) 
MFl/Z/l 
MF2/X/1 
MF2/Y/1 
MF2/Z/1 
MF3/X/1 
MF4/Y/1 

SumMFl/X/1 

SumMFl/Y/1 
SumMF2/Y/l 
SumMF2/Z/l 
SumMF3/Y/l 
SumMF3/Z/l 
SumMFi/Y/1 

Sensor 2 Only (96.25% Accuracy) 
Etrp/X/2 

EtrpCW/Z/2 
EtrpWavelet/X/2 
EtrpWavelet/Z/2 

Mean IY 12 
MF1/Z/2 
MF2/Y/2 

MF3/X/2 
MF3/Y/2 
MF3/Z/2 
MFA/Z/2 

RecSk/X/2 
RMS/Y/2 
RMS/Z/2 

SumMFl/X/2 
SumMFl/Z/2 
SumMF2/X/2 
SumMF2/Y/2 
SumMF3/Z/2 
SumMFA/Z/2 

Table 3.6: Best features for tool condition estimation using a single sensor. 

classification accuracy. Note that all the features in Table 3.5 are included in Table 

3.2. 

We also use the testing data to evaluate how accurately we can identify the tool 

condition using the features extracted from a single sensor. Table 3.6 shows that 

we can achieve 97.69% classification accuracy using 20 features from Sensor 1 and 

96.25% classification accuracy using 20 features from Sensor 2. Therefore, if only a 

single sensor can be used to classify the tool condition, Sensor 1 should be used since 

it provides higher classification accuracy than Sensor 2 while using the same number 

of features. This result is consistent with the result in Section 3.3.2 for breakage 

detection. 

Finally, we use the testing data to evaluate how accurately we can identify the 

tool condition using data from both sensors. Table 3.7 shows that we can achieve 

98.41% classification accuracy using 34 features. 

3.3.4 Comparative Study 

We compare the PCA + MLP approach with the mTS + PNN approach for 

classification of tool condition given the run-to-failure data. Both algorithms are 
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Both Sensors (98.41% Accuracy) 
Etrp/X/1 Mean/Y/2 MF3/Y/1 SumMFl/Z/2 
Etrp/Y/2 Mean/Z/l MFA/Y/1 SumMF2/Y/l 

EtrpCW/Z/l MF1/X/1 RMS/Y/1 SumMF2/Z/l 
EtrpSTFT/Y/1 MF1/X/2 RMS/Z/1 SumMFZ/X/l 

EtrpWavelet/X/l MF2/X/1 RMS/Z/2 SumMF3/Y/l 
EtrpWavelet/X/2 MF2/X/2 SumMFl/X/1 SumMF3/Y/2 
EtrpWavelet/Y/1 MF2/Y/2 SumMFl/Y/2 SumMF3/Z/l 
EtrpWavelet/Z/2 MF2/Z/1 SumMFl/Z/1 SumMFA/Y/l 

Table 3.7: Best features for tool condition estimation using both sensors. 

PCA + MLP 

mTS + PNN 

Breakage de tec t ion 

Accuracy (%) Processing time (s) 

99.10 32.5 

99.95 7.4 

Tool condit ion e s t imat ion 

Accuracy (%) Processing time (s) 

77.50 33.0 

98.41 7.1 

Table 3.8: Comparison of feature selection techniques. 

implemented in Matlab on a desktop computer with an Intel Core2 CPU (Q8200, 

2.33 GHz) and 2 GB of RAM. Because the mTS + PNN method uses 17 features for 

breakage detection and 34 features for tool condition estimation, we use choose 17 

principal components for breakage detection classification and 34 principal compo­

nents for tool condition using the PCA + MLP approach. We note that the principal 

components obtained using PCA are not individual features; they are linear combi­

nations of the 108 features extracted from the sensor data. Hence, in the absence 

of prior knowledge, the PCA + MLP method must extract all 108 features before 

performing PCA. The mTS + PNN method, in contrast, needs to extract only the 

features listed in Tables 3.4 and 3.7 to obtain the classification result. Table 3.8 com­

pares the performance of the two techniques when data from both sensors is used. In 

Table 3.8, "Processing Time" is the average amount of time required to classify one 

input data measurement. Table 3.8 shows that the classification accuracy and the 

processing time are both improved using the proposed method. 
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3.4 Conclusions 

In this chapter, we developed a method for classifying the wear of a shaving tool 

using indirect measurements. We proposed a new metric, SumMFN, which helps 

to characterize the tool wear state. We also applied a recently-developed feature 

selection and classification technique, modified tabu search with a probabilistic neural 

network, to achieve high classification accuracy and short processing time. Through 

an experimental case-study, we showed that the proposed technique correctly classifies 

the shaving tool wear and provides faster, more accurate results than a conventional 

approach. 

To justify the relevance of the proposed feature selection and wear classification 

approach, we estimated the potential cost-savings to a company sponsor if the pro­

posed approach were implemented. Considering tooling costs, setup time, and scrap, 

we showed that the proposed feature selection and wear classification approach could 

save > $11, 000 per tool per machine. Production downtime and maintenance person­

nel costs, which may be significant, were not considered in this cost-savings estimate. 

48 



www.manaraa.com

CHAPTER IV 

SISO Pseudo Transfer Function Identification 

4.1 Introduction 

In many applications of system identification, the system is driven by external 

excitations that are not measured. Still, output measurements may be used to detect 

whether the dynamics of the system have changed. In particular, output-only system 

identification techniques have been used for damage detection in numerous applica­

tions [38, 31, 35, 36, 39, 34, 40, 33]. Since the input (excitation) signal is unknown, its 

statistical properties are often assumed to be known in order to compensate for the 

lack of knowledge of its time history. It is typically assumed that the input is white 

noise, and frequency-domain [38, 39, 40, 42], subspace-based [33, 34, 35, 36], and 

time-domain [31] system identification techniques are used to detect changes in the 

dynamics of the system. Blind source separation techniques can also be applied [37]. 

A related technique is used in [104] for blind channel identification in FIR systems. 

In this chapter we develop an output-only identification technique that uses mul­

tiple outputs but requires neither measurements nor a statistical description of the 

external input signal. We designate one of the output signals as the pseudo input and 

another as the pseudo output. The resulting pseudo transfer function (PTF) from the 

pseudo input to the pseudo output thus provides a map between the output signals. 

The main contribution of this chapter is an analysis of the order and relative degree 
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of the PTF between a pair of outputs. In particular, we prove that the order of the 

PTF is one less than the order of the system and the relative degree of the PTF is 

zero. Next, we apply system identification techniques to the PTF. For the case of 

noisy measurements, we use quadratically-constrained least squares (QCLS) [50] to 

identify the PTF. Assuming that the input is sufficiently persistent (see Definition 

B.0.3) and the output-noise autocorrelation is known up to a scale factor, QCLS 

achieves consistent parameter estimates for arbitrary noise types and input signals. 

We then use changes in the estimated PTF to detect system faults. 

To compare a transmissibility [105] and a PTF, consider the system G in Figure 

4.1. The transmissibility from yy to y2 in Figure 4.1(a) assumes that y\ is colocated 

with the excitation u. Hence, because the transfer function from u to yi is given by 

Vi = u, 

and the transfer function from u to y2 is given by 

N2 

V2 = -£-«, 

the transmissibility from yi to y2 is given by 

N2 
V2 = -pVi- (4-1) 

However, the PTF from y± to y2 in Figure 4.1(b) does not assume that y\ and u are 

colocated. Then the transfer function from u to y\ is given by 
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and the transfer function from u to y^ is given by 

N2 

V2 = TU. 

Hence, the PTF from yy to yi is given by 

N2 (4.2) 

We note that the transmissibihty (4.1) contains pole information, while the PTF 

(4.2) does not. Furthermore, pole information appears in the output-to-output rela­

tionship only if the excitation and sensor measurement are colocated, and hence a 

transmissibihty is a special type of PTF. 

(a) (b) 

Figure 4.1: Difference between the transmissibihty from yx to y2 (a) and the pseudo 
transfer function (PTF) from yx to y2 (b). 

The rest of this chapter is organized as follows. Section 4.2 explains how transfer 

functions are used to model input-output relationships. Section 4.3 reviews the effect 

of sampling zeros on the order and relative degree of discrete-time transfer functions. 

Section 4.4 uses input-output transfer function models to obtain output-output PTF 

models. Section 4.5 provides simulation examples with noisy and noise-free measure­

ments. 
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4.2 Problem Formulation 

Consider the system 5? in Figure 4.2, which has a scalar input u and two scalar 

outputs y\ and y2. For i = 1,2, the subsystem S^i has the input u and output yt. 

Measurement noise corrupting y\ and y% is denoted by w\ and iy2, respectively. For 

A e Enxn, B e r , c = 

representation of 5? is denoted by (A, B, C, D), where 

Co 
€ M2xn, and D 4 

£>2 
a state space 

x(t) = Ax(t) + Bu(t), x(0) = x0, (4.3) 

y{t) = Cx(t) + Du(t). (4.4) 

For i = 1,2, a state space representation of J^j is given by (A, B, Ci, Di). We let 

G denote the continuous-time transfer function corresponding to (A, B, C, D) and, 

for i = 1,2, we let Gi denote the continuous-time transfer function corresponding to 

w}(k) 

y2(kh) 

w2(k) 

ID PTF 

Figure 4.2: Method for identifying a pseudo transfer function (PTF). 

For k € {0,1, . . .} and sample interval h > 0, we apply the variation of constants 
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method [106] to solve (4.3) for x(t) from t = kh to t = kh + h, which yields 

rkh+h 

x{kh + h) = eAhx(kh) + / eA{kh+h~T) Bu{r)dr. 
Jkh 

(4.5) 

We assume that u(t) changes sufficiently slowly that u(kh) «s u(kh + h). Hence, we 

rewrite (4.5) and (4.4) as 

x(k + 1) = Ax{k) + Bu{k) (4.6) 

and 

y(k) = 
Vi(k) 

Ifc(fc) 

= Cx{k) + Du(k), (4.7) 

where x(k) — x(kh), u(k) = u(kh), A = e , and 

B 
rh 

-J • 
Jo 

eATdrB. 

For i = 1,2, (4.7) implies 

yl{k) = Cix{k) + Diu(k). (4.8) 

For i = 1,2, let 

Gi(s) = d (si - A) lB + D{ 

_ hrms™1 + A.m.-ia"1 '"1 + • • • + A,o 

sn + a n _ i s n _ 1 H \-a0 
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denote the continuous-time transfer function corresponding to (A, B, C„ Dt), and let 

Ghh{z)=Ct(zI-A)-1B + Dl 

zn + an^xz
n-1 + • • • + a0

 { ' 

denote the discrete-time transfer function corresponding to (A, B, Ct, Dt). We assume 

that (A, B,Ci,Di) and (A,B,C2,D2) are minimal realizations of G\^ and G^h, re­

spectively, and thus G\th and G*2,/i each have order n. This assumption requires that 

sampling does not cause loss of observability or controllability [107]. 

To account for the possibly nonzero initial condition x0 and the resulting free 

response, we write Gi:h and G<i,h in terms of the forward shift operator q [108] rather 

than in terms of the ^-transform variable. For i = 1,2, we obtain 

y^ = G,,fc(q)ti = ^ t i , (4.10) 

where 

(J(q) = det(qJ - A) 

and 

»fc(q) 4 Qadj(q/ - A)B + A % ) 

are polynomials in q, and yt and u denote time sequences, that is, y% = {^(0), y t ( l ) , . . .} 

and thus qyt = {yt(l),yl(2),...}. Note that (4.10) represents an ARMA time-series 

model rather than a relation between z-transforms. For i = 1,2, since (A, B,Ct,Dt) 

is a minimal realization of Ghh, the polynomials 8(q) and ^(q) are coprime. 
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It follows from (4.10) that 

%(q)*(q)j/i = %(q)»7i(q)«, 

»7i(q)<5(q)y2 = m(q)^(q)w, 

and thus 

%(q)<5(q)yi = »/i(q)*(q)j/2-

The PTF from yi to 2/2 can thus be written as 

<*(q)»fc(q) ^i m 
^2 = r/ A / x?/i- I4-11) 

5(q)»7i(q) 

Note that (4.11) is independent of the input u. Because (4.11) is expressed in terms 

of the forward shift operator q and not the complex number z, (4.11) accounts for 

nonzero initial conditions. 

Unlike common factors in the complex number z, common factors in the forward-

shift operator q cannot always be cancelled. This point is illustrated by the following 

example. 

Example 4.2.1 Consider the sequences 

yi = {yi(0),yi(l),...} = {1,2,3, . . .} , (4.12) 

2/2 = {1/2(0), j / 2 ( l ) , . . . } = {6, 7 ,8 , . . .} . (4.13) 
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Operating on (4.12) and (4.13) with q — 1 yields 

(q-1)2 / ! = { 2 - 1 , 3 - 2 , 4 - 3 , . . . } = {1,1,1, . . .} , 

( q - l ) j / 2 = { 7 - 6 , 8 - 7 , 9 - 8 , . . . } = {1,1,1, . . .} . 

Hence (q - l)y1 = (q - l)y2, whereas y1 ^ y2. 

Despite Example 4.2.1, we show in Section 4.4 that the common factor 5(q) in 

(4.11) can be cancelled. This cancellation is possible because 5(q), ^i(q), and 772(q) 

are obtained from minimal state-space realizations of G\th and G2,h with the same 

initial condition x0. 

To identify a PTF, output data are collected from sensors. Although we make 

no explicit assumptions about the persistency of u, the pseudo-input y\ must be 

sufficiently persistent for PTF identification. Estimation of the PTF from y\ to y2 

can be classified as a functional errors-in-variables identification problem [109] because 

2/i is an arbitrary (not necessarily white) signal. 

4.3 Sampling Zeros 

Discretization of a continuous-time system may yield a discrete-time system that 

has more zeros than the continuous-time system. The additional zeros are called 

sampling zeros [110]. For discrete-time models that arise from sampled-data systems, 

the following result shows that zero-order-hold sampling oi Gi, i = 1,2, yields the 

discrete-time transfer function G^h given by (4.9), whose relative degree di = n — rrii 

is either 0 or 1. 

Proposition 4.3.1 Let i = 1,2. If n = rrii, then di = 0 and fiiiTl ^ 0. If n > m*, 

then di = 1, /?,,„ = 0, and /3;jre_i 7̂  0. Furthermore, as h —> 0, di — 1 zeros of G j^q ) 
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approach .the roots of Jdt{<l), where 

^ ( q ) = Jd^'1 + Jdl,2^~2 + ••• + Jdudt, 

and, for k £ { 1 , . . . , <ii}, 

di + l 

Furthermore, the roots of Jd,(q) are distinct and negative. 

Proof 4.3.1 It is shown in Theorem 1 of [110] that d— 1 zeros ofGhh{q) approach 

the roots of Jd,(q)- Theorem 2.1 of [111] shows that the roots of Jdt(l)
 are distinct 

and negative. • 

Note that </d,(q) is the Euler-Frobenius polynomial [111] 

J*(q) = < 
i, di = 1, 

i ̂  « r (i^). * > 2. 
For example, 

•Mq) = q + 1, 

with root —1, 

^3(q) = q2 + 4 q + l , 

with roots — 2 ± \ / 3 , and 

^ ( q ) = q3 + Hq 2 + l l q + l , 
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with roots —1, —5±2\/6. Finally, since Jd(q) is a palindromic polynomial, it follows 

that —1 is a root of ./^(q) with multiplicity 0 or 1, and, if A is a root of Jdi(q), then 

1/A is a root of Jdj(q) [H2]. Since, in addition, all of the roots of Jd^q) are negative, 

the asymptotic zeros due to sampling appear at either —1 or in negative reciprocal 

pairs or both. 

4.4 Output-Only Model 

For i = 1,2, we formulate an equivalent matrix representation of (4.11) by writing 

n n 

»fc(q) = ^2 &j'tf'' 5(q) = J2 a^j-
j=Q j=0 

We define 

v = NY e Rl~n, (4.14) 

where 

N± N2 - iV i 
-n)x2l 

and, for i = 1, 2, 

Ni± 

Pifi ... Pi,n 0 . . . 0 

0 A,0 • • • Pi,n ' • '• 

: '•• ••• '•• ••• 0 

0 . . . 0 A,0 ••• A,n 

-n)xi 
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Without loss of generality, we assume an = 1 and express (4.11) as 

Av = 0, (4.15) 

where, for I > 2n data points, 

A 4 

a0 ... an-i 1 0 

0 a0 . . . oin_i 1 

0 . . . 0 a0 ... Oin-l 1 

l-2n)x{l-n) 

Finally, we define 

Y± 
Y2 

y i ( ' - i ) 

2/2(0) 

V2(l ~ 1) 

D2J 

Combining (4.15) and (4.14) yields 

(4.16) 

ANY = 0, (4.17) 

which is an equivalent matrix formulation of (4.11). 

From (4.16) we have for i = 1,2, 

Yi = riXo + HiU, (4.18) 
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where 

r = 
1 1 — 

a 

a.Al-

tlxn e Wxn, U 

«(0) 

u(l - 1) 

GM\ 

and 

"H.% — 

Dt 0 . . . 0 

CtB D% '•• : 

: '• . '• . o 

CtA
l~2B ... CtB Dz 

Hlfi 0 

•H»,i-i 

j l X l 

Then we define 

and 

so that 

Furthermore, 

Htli Htfi 

^i,free — ^ t-^0 

*i, forced — r t i t / j 

M — •* i.free i •* i,forced-

y = r̂ o + w , 
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where T = 
r2 

and Ti. = 
n2 

. Finally, 

y = f̂ree + ^f forced > 

where 

and 

*free 
•*l,free 

^2,free 

-'forced — 
* 1 , forced 

* 2, forced 

Hence, (4.17) can be written as 

AN(Yiree + yforced) = 0. (4-19) 

Now we show that yfree € Af{N) and Yforced € Af(N), and thus Y € M"(N), where 

J\f(N) is the null space of JV. 

Lemma 4.4.1 iV2ri = JVi^. 

Proof 4.4.1 See Appendix A. 

Proposition 4.4.1 NY^ee — 0. 

Proof 4.4.2 With u{k) = 0, (4.18) implies 

• 

N2Y1<iree = iV2ria;(0), (4.20) 
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iVlY2,free = J V ^ O ) . 

Subtracting (4-%l) from (4-20) and using Lemma 4-4-1, we have 

= iV2r1x(0) - iVir2a:(0) 

= 0. 

Lemma 4.4.2 N2Hi = N1H2-

Proof 4.4.3 See Appendix A. 

Example 4.4.1 Consider the IIR system 

2M f c ) = -3.—rz—u(k)' yz(k) = - 5 — r — u ( f c ) > q2 — bq— a q2 — bq— a 

where 

0 1 

a b 
, B = 

0 

1 
, Cx = 1 0 

Co = 0 1 , £>i = D2 = 0. 

Finally, let I = 5 > 2n = 4. Then 

Ni = 

1 0 0 0 0 

0 1 0 0 0 

0 0 1 0 0 

N,= 

0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 
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Ti = 

1 

0 

a 

ab 

a2 + ab2 

0 

1 

6 

a + b2 

2ab + b3 

r2 

0 

a 

ab 

a2 + ab2 

1 

b 

a + b2 

2ab + b3 

2a2b + ab3 a2 + 3ab2 + 64 

Wi = 

0 

0 

1 

6 

a + b2 

0 

0 

0 

1 

b 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

, V.2 = 

0 

1 

6 

a + b2 

2ab + b3 

0 

0 

1 

6 

a + b2 

0 

0 

0 

1 

6 

0 

0 

0 

0 

1 

0 

0 

0 

0 

0 

Hence, 

JV2r! = NiT* = 

0 1 

a b 

ab a + b2 

which confirms Lemma 4-4-1- Furthermore, 

N2Hi = N{H2 = 

0 0 0 0 0 

1 0 0 0 0 

6 1 0 0 0 

which confirms Lemma 4-4-%-

Proposi t ion 4.4.2 NY{orce^ = 0. 

Proof 4.4.4 With x0 = 0, (4-18) implies 

N2Y1Mced = NzHiU, (4.22) 

^ f o r c e d = N{H2U. (4.23) 
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Subtracting (4-23) from (4-22) and invoking Lemma 4-4-2 yields 

NYforced — A^ll.forced ~ -/VxY f̂orced 

= N2HiU - N{H2U 

= 0. D 

Combining Propositions 4.4.1 and 4.4.2 with (4.19) yields the following result, 

which is stronger than (4.17). 

Theorem 4.4.1 NY = 0. 

Theorem 4.4.1 is an equivalent matrix formulation of 

Comparing (4.24) with (4.11), Theorem 4.4.1 shows that cancellation of the <5(q) in 

the numerator and denominator of (4.11) is valid. The following result characterizes 

the order and relative degree of the PTF given by (4.24). 

Proposition 4.4.3 The PTF in (4.24) obtained by sampling the one-input, two-

output continuous-time system (4.3),(4.4) and using zero-order hold has relative de­

gree 1 if D\ 7̂  0 and D2 = 0; relative degree — 1 if Di = 0 and D2 ^ 0; and relative 

degree 0 otherwise. Furthermore, the PTF has order n if Di ^ 0 and order n — 1 

otherwise. 

Proof 4.4.5 Since rji(q) andn2{q) are the numerators of the discrete-time trans­

fer functions from u to yi and u to y2, respectively, Proposition 4-3.1 implies that, 

fori = 1,2, r)i(q) has degree n if the continuous-time system has relative degree 0 and 

degree n — 1 otherwise. • 
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Note that y\ and y2 are related by 

_ C2adj(qJ - A)B + £>2det(qJ - A) 
V2 ~ d a d j ( q / - A)B + Didetiql - A)1*1' 

(4.25) 

which shows that the PTF from y\ to y2 captures information about the zeros of Gith 

and G2,h-

4.5 Examples 

Consider the mass-spring-damper structure in Figure 4.3, which has the equations 

of motion 

Mq(t) + Cdq(t) + Kq(t) = F{t), (4.26) 

where 

9(0 = 

K 

, M = 
mi 0 

0 m2 

i Cd 
c\ + c2 - c 2 

- c 2 c2 + c3 

h + k2 —k2 

—k2 k2 -\- k^ 
,F(t) 

hit) 1 

0 
u(t). (4.27) 

We express (4.26) in state-space form (4.3), where x(t) = qiit) q2{t) vi(t) v2it) 

A± 

0 

0 

fcl+fc2 

m i 

TU2 

0 

0 

Jsa. 
m j 

fc2+fe.3 
rri2 

1 

0 

C1+C2 

.£2-
TT12 

0 

1 

C2+C3 
m 2 

,B 

0 

0 

1 
m i 
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and where mi = | m 2 = 1 kg, k\ = |fc2 = §&3 = 4 N/m, ci = | c 2 = § c3 = 0.5 kg-m/s, 

and ft, = 0.5 s. 

<?/. •*'/.«/ #> v > (h 
*1 

-v\A-
, C ; 

1 
—7i 

— * 

r 
»*i 

c O 

A A 

1 CN 

1 — 
S 

— » 

'"* 

( ) ( ) 

k3 
A A 

C i 

-HJ— 

Figure 4.3: 2 DOF Mass-spring-damper structure. 

We use Markov parameters to characterize (4.25) because Markov parameters can 

be estimated consistently under more general conditions than coefficients, poles, or 

zeros [113]. Hence, we consider the /x-Markov model structure 

y2(k) = - a^ik -ft) a^+nmod_i?/2(fc - /J, - nmod + 1) 

+ Jfoj/i(*0 + • • • + #„-iyi(fc - A* + l) 

+ b/*J/i(fe -!*) + ••• + 6M+nmod_iyi(A; -fi- nmod + 1). (4.28) 

The order of this model is nmod due to the cancellation of (x poles and zeros. The 

absence of terms involving y2(k — 1 ) , . . . , y2(k — fj, + 1) is responsible for the explicit 

presence of the Markov parameters .fifo, • • •, -H^-i- Note that, if y\ is a realization 

of a white random process, the Markov parameters H0,..., ifM_i can be estimated 

consistently using least squares (LS) [113]. However, because y\ is not a realization 

of a white noise process, we use QCLS to provide consistent estimates of the Markov 

parameters [50]. 

We investigate the accuracy of the estimates of the Markov parameters of a PTF 

for various u and x$. We quantify the difference between the estimated and actual 
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Markov parameters by defining 

Sr — ""max [T - t ) , 

where, for /t = 10, 

H0 ••• 0 

T± : ... 0 

Hg • •• HQ 

is the truncated Toeplitz operator [114] and T is an estimate of T. 

4.5.1 Effect of model order with noise-free measurements 

We first investigate the effect of the order of the //-Markov model on the accuracy 

of the estimated Markov parameters of the PTF. We consider three different input 

signals u, namely, a realization of a white Gaussian process with mean 0 and variance 

1, a square wave with period 0.33 s, and a sine wave with period 0.33 s, as well as 

zero and nonzero x0. We simulate (4.26) to obtain the position q± of the first mass 

and the velocity v2 of the second mass. We then use LS with the //-Markov model 

structure (4.28) of relative degree 0 to estimate the first 10 Markov parameters of 

the PTF from q\ to v<i- For 50 realizations of 500 samples of each u, we construct er 

and compute the average estimation error er over all u. Plotting er as a function of 

the /^-Markov model order nmod in Figure 4.4 shows that the Markov parameters are 

correctly estimated if nmod > n — 1 = 3. 

4.5.2 Consistency of the estimated PTF 

We now investigate the effect of output noise on the accuracy of the identified PTF 

by adding noise to both the pseudo input and pseudo output. Since the pseudo input 
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o 

< XQ — 0, u = white 
A XQ T̂  0, u = white 
> xo ^ 0, u = square wave 
o XQ ^ 0, u = sine wave 

2 3 4 5 6 
//-Markov model order n m o c j 

Figure 4.4: Error in the estimated Markov parameters of the P T F from qi to v2 as 
the //-Markov model order increases. 

is not a realization of a white random process, LS with a //-Markov model structure 

does not yield consistency of the Markov parameters. Hence, for comparison, we use 

both LS and QCLS [50] with the //-Markov model structure (4.28) with nmod = 3 

and relative degree 0 to estimate the first // = 10 Markov parameters of the P T F 

from qi to v2- To obtain consistent estimates, QCLS requires knowledge of the noise 

autocorrelation 

R = E [i/j(k)lpT(k)] e E(2"n>od+M+l)x(2nmod+M+l) 
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to within a scalar multiple, where nmo(i + // — l < f c < Z , Ms the number of data 

samples, 

^ ) = 

and, for i = 1,2, 

&(*) 4 w t(fc) Wj(A; - /x) u>2(£; - // - nmod + 1) 

Note that we form R by solving a discrete-time Lyapunov equation for the autocor­

relation of the noise vector ip(k) [115]. 

We choose x(0) ^ 0 and u ~ N(Q, 1) and, for i = 1,2, we choose the standard 

deviation of wt so that the signal-to-noise ratio (SNR) is 10. For LS, we let p, = 10 

in (4.28) and estimate the first 10 Markov parameters of the PTF from q± to i>2. For 

QCLS, we let \x = 1 in (4.28) and estimate the coefficients of (4.28). We then impulse 

the identified model (4.28) to obtain an indirect estimate of the first 10 Markov 

parameters of the PTF from q\ to i>2. We use the estimated Markov parameters 

from LS and QCLS along with the true Markov parameters to compute er, which 

we average over 50 noise sequences and 10 input sequences to obtain £?. Figure 4.5, 

shows that QCLS provides consistent estimates of the PTF, while LS does not. This 

result is expected since the pseudo-input yi is not white. 

4.5.3 Damage detection through PTF estimation 

Finally, we investigate whether changes in the identified PTF can be used to detect 

changes in system parameters. We choose x(0) 7̂  0 and u ~ iV(0,1) and simulate 

(4.26)-(4.27). In this case, we consider the exactly proper PTF from the acceleration 

a\ of the first mass to the acceleration a2 of the second mass. Both continuous-time 
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Figure 4.5: Error in the estimated PTF from qi to i>2, where zero-mean noise is added 
to both output measurements. 

transfer functions Gi and G<t have 2 zeros at s = 0. Under sampling, these zeros map 

to the same locations, and thus the order of the PTF from y\ to y2 is n = 2. Adding 

white noise with a SNR of 100 to both yx and y2, we use QCLS with a //-Markov 

model structure (4.28) with nmod = n = 2, fj, — 1 and relative degree 0 to estimate 

the model coefficients. We then impulse the identified model to estimate the first 

yu = 2 Markov parameters of the PTF from a\ to a2. 

At time step k = 34, the stiffnesses fc$ are reduced by a factor of 2 and the damping 

ratios q are increased by a factor of 3. Figure 4.6 shows the change in the true and 

estimated Markov parameters after damage is introduced. At time step k = 66, 

we re-initialize the QCLS algorithm. Figure 4.6 shows that the Markov parameter 

estimates converge to the modified values after re-initialization. Note that the QCLS 

algorithm returns zero estimates until / = 3nmod + 2// — 1 = 9 data samples have been 

collected. 
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Figure 4.6: Damage detection using the PTF from ai to a2, where white, zero-mean 
noise is added to both output measurements. 

4.6 Conclusions 

For SISO sampled-data systems, we defined the concept of a pseudo transfer func­

tion (PTF) from one output to another. A PTF, which contains information about 

the zeros of the system, does not depend on either the input to the system or its 

initial condition. We provided results to illustrate that a PTF can be estimated con­

sistently in the presence of output noise if the autocorrelation of the output noise is 

known to within a scalar multiple. We also demonstrated how PTFs can be used to 

detect faults in a simulated mass-spring-damper system. Future research will address 

consistency of the PTF estimate when the output noise autocorrelation is unknown 

using an instrumental variable approach [116]. Investigation into damage localization 

using PTFs is also left for future research. 
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CHAPTER V 

MIMO Pseudo Transfer Function Identification 

5.1 Introduction 

In some applications, the excitation may be unknown and thus output measure­

ment data may be the only available information for system identification. In this 

case, it is typically assumed that the excitation is generated by a white random 

process, and frequency-domain [38, 39, 40, 42], subspace-based [33, 34, 35, 36], and 

time-domain [31] system identification techniques are used to detect changes in the 

dynamics of the system. Blind source separation techniques can also be applied [37]. 

As an alternative approach, pseudo transfer functions (PTFs) are used in [56, 58] 

to detect system changes under unknown excitation. SISO PTFs for single-input, 

two-output systems are characterized in [56, 58]. Sampling introduces additional 

zeros into a discrete-time input-output model if the relative degree of the continuous-

time system is greater than 1 [110]. Hence, for a strictly proper continuous-time 

system, the order of the SISO PTF arising from a sampled-data application is n — 1, 

where n is the order of the underlying system [56, 58]. Since a PTF is essentially a 

ratio of transfer functions, the information in a PTF consists of information about 

the zeros of the system from the unknown excitation to each of the outputs. For 

applications involving structural dynamics, PTFs can be viewed as an extension of 

transmissibilities, where PTFs do not require that one of the outputs be colocated 
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with the prescribed displacement [42]. 

The results of [56, 58] assume that a single unknown excitation is applied to the 

system. For the case of multiple excitation signals, it is shown in [57] that additional 

outputs can be used to obtain a MIMO PTF that is independent of the excitation 

signals. For example, the system shown in Figure 5.1 is excited by both ui and «2 so 

that the output measurements y\, y2, and y3 contain contributions from both u\ and 

U2- Therefore, for j = 1,2,3, y ^ , which is the effect of tt2 on the j t h output, appears 

as output noise corrupting measurement yj. Furthermore, identification of the SISO 

PTF from y\ to y2 involves estimation in the presence of noise due to u2. However, 

identification of the MIMO PTF from [y\ y2] to y$ is noise-free in the sense that, 

in the absence of additional noise sources, exact identification of the MIMO PTF is 

possible using finite data. In [57], recursive least squares is used to identify MIMO 

PTFs. 

«2-
s> •* Vt = VIA + V\3 

-» 1/2 = ltt.1 + 02.2 

(a) 

«2" 
& 

•* vi = m,i + j fu 
•* 1/2 = J/2,1 + 1/2,2 

-» U% = 1/3.1 + 1/3,2 

(b) 

Figure 5.1: Illustration of how unknown multiple excitation signals can cause an in­
crease in output noise. 

The contribution of this chapter is to analyze MIMO PTFs in terms of the con­

ditions on the outputs under which a MIMO PTF can be defined. In particular, 

we consider the normal rank of the PTF as well as its order and relative degree. 

We also go beyond the results of [57] by considering the case in which the outputs 

are corrupted by noise that is not due to an excitation signal. Hence, we consider an 

errors-in-variables identification problem. To address this problem, we apply quadrat-

ically constrained least squares [50]. Since the results of [50] are confined to SISO 

systems, we apply the MIMO extension developed in Appendix B. In addition, we 
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use the ^-Markov model structure rather than an ARMAX model structure since the 

former requires only a lower bound on the estimated model order. 

5.2 Problem Formulation 

u, 
> 

• 
> 

um 

y> > 
s 

• • • 

yP-i 
A 

y" > S 

- / -

S-

- / -

y > •> 

* * * 

yP-i 
s 

y P 
s 

ID — 3 » PTF 

Figure 5.2: Pseudo transfer function (PTF) identification problem. 

Consider the system 5? in Figure 5.2, which has unknown inputs u\,..., um and 

outputs yi,...,yp. We define u and y = Vi VP . For u\ ••• um 

A e Rnxn, B e Rnxm, C e Wxn, and D G Rpxm , a state space representation of S" 

is denoted by (A, B, C, D), where 

x(t) = Ax(t) + Bu(t), 5(0) = XQ, (5.1) 

y(t) = Cx(t) + Du(t). (5.2) 

For k € {0,1, . . .} and sample interval h > 0, we apply the variation of constants 
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method [106] to solve (5.1) for x(t) from t = kh to t = kh + h, which yields 

pkh+h 
x(kh + h) = eAhx{kh) + / eA(kh+h-T) Bu(r)dr. (5.3) 

Jkh 

We assume that u(t) changes sufficiently slowly that u(kh) PH u(kh + h). Hence, we 

rewrite (5.3) as 

x(k + l) = Ax(k) + Bu{k), (5.4) 

where x(k) = x(kh), u{k) = u(kh), A = eAh, and 

rh -
B= / eATdrB. 

Jo 

We rewrite (5.4) in terms of the forward-shift operator q as 

6((i)x = adj (q/ - A) Bu, (5.5) 

where 

5 ( q ) ^ d e t ( q / - A ) 

and adj(-) denotes the adjugate operator. Defining y(k) = y(kh), it follows from (5.2) 

that 

y(k) = Cx(k) + Du(k). (5.6) 

For the remainder of this chapter, we assume p > m. Hence, substituting (5.5) 
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into (5.6) yields 

<5(q)y = N(q)u, 

where, for [/(q) G Mmxm[q], L(q) G R^-m)xm[q], Cv G 

Dv G Rmxm, and DL G R^"1^"1, 

iV(q) A c a d j ( q / _ A) B + <5(q)£> 

£(q) 

Cc/adj (q/ - A) B + 8(q)Du 

CLadj(clI-A)B + 8{cl)DL 

We can also write (5.8) as 

y = G(q)u 

± [C (q/ - A) - 1 5 + D] 

Gu(q) 

GL(q) 

w 

w 

CV (q/ - A ) - 1 5 + Dv 

CLiqI-Ay'B + DL 
u. 

5.3 Output-Only Model 

For 1 < i < j < p, we define 

l/[i:j] 2/i • •' Vj 
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so that 

y[l:m] 

y\m+l:p) 

It follows from (5.7) that 

<KqMl:m] = U(CI)U (5.9) 

and 

S(q)y[m+i:P] = L(q)u. (5.10) 

Multiplying (5.9) on the left by adj (t/(q)) yields 

6(q)adj (£/(q)) y[l:m] = det (t/(q)) w. (5.11) 

Assuming det {U(q)) is not the zero polynomial and thus C/(q) is invertible, we sub­

stitute (5.11) into (5.10) to obtain 

<5(q)det (U{q))y[m+1:p] = 5(q)L(q)adj (U(<i))y[1:m]. 

Hence, 

where 

V[m+i:P] = r(q)y[i:m], 

T^ - mMmL(q)adj (c/(q)) e R(P_m)xm[q] (5.12) 
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is the MIMO PTF from y[i-m\ to y[m+i:p]. As explained in [58] for the case m = 1, the 

common factor 8(q) can be cancelled. 

Note that 

C/(q) = PQ(q), (5.13) 

where 

Cv Dv 
Bmx(n+m) 

and 

Q(q) = 
adj (q/ - A) B 

(n+m)xm 

The following result uses (5.13) to provide a necessary condition for det U(q) ^ 0. 

Proposition 5.3.1 If det C/(q) ^ 0, then rankP = m. 

Proof 5.3.1 

normal rank U(q) = normal rank PQ(q) 

= min{rank P, normal rank Q(q)} 

= rank P = m. • 

Note that 

C/(q) = R(q)S, (5.14) 
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where 

*(q) = Cuadifrl-A) S(q)I„ pmx(n+m) 

and 

S± 
B 

Du 

r^ | j{n+m)xm 

The following result uses (5.14) to provide a necessary condition for det C(q) ^ 0. 

Proposi t ion 5.3.2 If det U(q) ^ 0, then rank S = m. 

Proof 5.3.2 

normal rank U(q) = normal rank R(q)S 

= min{normal rank R(q), rank S} 

= rank S = m. • 

The following result provides necessary and sufficient conditions for det U(q) ^ 0. 

Proposi t ion 5.3.3 det U(q) ^ 0 if and only if Gxr(q) has full normal rank. 

Proof 5.3.3 

\ - i normal rank Gu (q) = normal rank Cu (ql — A) B + Du 

= normal rank U(q) = m. D 

Propositions 5.3.1 and 5.3.2 provide necessary conditions for dett/(q) ^ 0. How­

ever, the following example shows that these conditions are not sufficient for Gxr(q) 

to have full normal rank and thus for det U(q) ^ 0. 
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Example 5.3.1 Let 

A = — 

1 

2 

0 

- 2 0 

1 0 

0 2 

, B = 

2 2 

0 1 

1 0 

Crr = 
- 1 0 0 

0 1 1 
Dv = 

0 0 

0 0 

Note that A is asymptotically stable, B and Cu are full-rank, (A, B, Cu, Du) is min­

imal, and rank P = rank S = m. However, 

Gu(q) = 
93 + 92 + ^ 9 + | 

-(g+J)(2g+l) -(q+±)(2q+l) 

i(<Z+i)(4<Z-3) K9+D(49-3) 

which does not have full normal rank. 

5.4 MIMO P T F Order And Relative Degree 

For i = 1 , . . . , p, we write 

yi(k) = Cix(k) + Diu(k), 

and thus 

<*(q)2/i = Nj(q)u, 
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where iVi(q) is the ith row of iV(q), C{ is the i th row of C, and A is the i th row of D. 

For all i G { 1 , . . . ,p} and all j G { 1 , . . . , m}, 

^j(q) 4 (iV(q))(. j } = Qadj (q/ - A) ^ + A , ^ ( q ) . 

Proposition 5.4.1 Let Gu(<l) have full normal rank. Then 

deg (det (t/(q))) < nm, 

and, for al\i,j G {1 , . . . , m}, 

d e g ( a d j ( C / ( q ) ) ( . . ) ) < n ( m - l ) . 

Proof 5.4.1 For all r G { l , . . . , p } £/ie degree of rjrj(q) is n if Drj ^ 0 and 

n — 1 otherwise (see Proposition 4-3.1). Hence, computing det U(q) using the cofactor 

expansion yields 

deg (det (U(q))) < m maxTft,,(g) 

= van. 

Furthermore, 

deg (adj {U(q)){iJ)j < (m - 1) I m a x ^ g ) 

= (m - l)n. D 

Proposition 5.4.2 Let G(q) have full normal rank. Then, for al i i G { 1 , . . . ,p — 

81 



www.manaraa.com

TO} and all j G { 1 , . . . , TO}, 

deg [L(q)adj (f/(q))] ( iJ ) < nm. 

Proof 5.4.2 For all r G {1 , . . . ,p} the degree ofr]ryj(q) is n if Drj ^ 0 and n — 1 

otherwise, as shown in Proposition 4-3.1. Hence, for all k G { 1 , . . . , TO}, 

deg [L(g)adj (U(q))](ij) < max (deg [L{q)]{ij)) 

+ max (deg [adj (U{q))]m) 

= n + n(m — 1) 

= nm. • 

Theorem 5.4.1 Let G(q) have full normal rank and assume that the common 

factor 5(q) in (5.12) can be cancelled. Then, for all i G { 1 , . . . ,p — TO} and for all 

j G { 1 , . . . ,TO}, the order of r(q)(jj) is less than or equal to nm. Furthermore, the 

relative degree d^j) of r(q)(jj) is given by 

d(iJ) 4 deg [det (C/(q))] - deg [L(q)adj (tf(q))] ( w ) . 

5.5 Three-Output , Two-Input Case 

Let p = 3 and TO = 1. From Theorem 4.4.1, the PTF from yi to y3 is given by 

Vs = r^Z/i- (5-15) 
^i,i(q) 
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Next, let m — 2. Assuming <5(q) in (5.12) can be cancelled, the PTF from Y[i:2] to y3 

is given by 

2/3 = r(i,1)(q)t/i + r(1)2)j/2, (5.16) 

where 

r / x = ^3,i(q)^2,2(q) - ?/3,2(q)r/2,i(q) 
(1,1) m,i(q)r/2,2(q) -%,i(q)m,2(q) 

and 

r ! 2 (q) = ^3,2(q)r7i,i(q) - 7?3;i(q)*7i,2(q) 
(1,2) »7i,i(q)%,2(q) - %,i(q)»7i,2(q)' 

It follows from (5.16) that, if two excitation signals are present, then the SISO PTF 

from y\ to y3 given by (5.15) is incorrect. In particular, (5.16) shows that both yx 

and y2 contribute to y3. Hence a MIMO PTF is needed to correctly characterize the 

output-output relationship. 

5.6 Examples 

Consider the mass-spring-damper structure in Figure 5.3, which has the equations 

of motion 

Mq{t) + Cdq(t) + Kq(t) = F(t), (5.17) 
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where 

?(*) = 

qi(t) 

Q2(t) M = 

mi 0 0 

0 m2 0 

0 0 m3 

G,= 

c\ + c2 - c 2 0 

- c 2 c2 + c3 - c 3 

0 - c 3 c3 + c4 

K = 

&1 + &2 ~&2 0 

-k2 k2 + k3 -k3 

0 —fc3 k3 + kA 

F(t) = Bu(t) = 

1 0 

0 1 

0 0 

«i(t) 

«2(*) 
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We express (5.17) in state-space form (5.1), where y(t) = 

Qi(t) 

Q2(t) 

«i(t) 

v2(t) 

Qi(t) q2(t) v2(t) 

x(t) = 
03x3 h 

-M~lK -M^d 
5 = 

03x2 

M-XB 

and where m\ = \m2 = | m 3 = 1 kg, ki = |A;2 = §£3 = |&4 = 4 N/m, Ci = | c 2 

| c 3 = |c3 = 0.1 kg-m/s, and h = 0.5 s. 

k, 1 — * 

hAA-i L-
qi>v1;ax 

k3 

c 

( ) ( ) 
u-> 

n q2<v2,a2 

m2 
c3 

o o 

q3»v3?a., 

—hAH 
l C 4 

m3 

0 C) 

IP-

Figure 5.3: 3 DOF mass-spring-damper structure. 

We use Markov parameter matrices to characterize the PTF estimate. To do this, 

we use the //-Markov model structure 

AQy2{k) = - A*Jfe(*: - A*) AM+nmod_i2/2(A: - /* - ^mod + 1) 

+ ff<#i(fc) + • • • + H^y^k -ft + 1) 

+ B^k - /* ) + ••• + 5M+„mod_iy1(fc - /1 - nmod + 1) (5.18) 

of order rim0d- The absence of terms involving y2(k — 1 ) , . . . , y2(k —/u,+l) is responsible 

for the explicit presence of the Markov parameter matrices H0,..., i7M_i. 

The /t-Markov model structure has two principal advantages over the traditional 
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ARMAX structure. First, within the context of least squares identification with 

a white excitation signal, it is shown in [113] that the //-Markov model provides 

consistent estimates of the Markov parameters in the presence of arbitrary output 

noise. Second, unlike parameter coefficients in an ARMAX model structure, the 

estimates of the Markov parameters are insensitive to the assumed model order nmod 

as long as nmod is larger than the true model order n. Consequently, only an upper 

bound on the true model order is needed. 

For MIMO PTF identification, neither output signal is white, and thus we use 

quadratically constrained least squares (QCLS) with the /it-Markov model structure 

(5.18). As discussed in Appendix B and [50], if the noise autocorrelation matrices 

are known to within a scalar multiple, QCLS yields consistent parameter estimates 

in the presence of both input and output noise. If this assumption is not satisfied, 

instrumental variables methods [116] can be used to achieve consistent parameter 

estimates. 

To quantify the difference between the estimated and actual Markov parameter 

matrices, we define 

IT-T i l 
£ r 

where 

T 4 

vec (H0) 

vec (if3) 

and T is the estimate of T obtained from QCLS. 
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5.6.1 Effect of model order with noise-free measurements 

We investigate the effect of the //-Markov model order nmoci on the accuracy of the 

estimated Markov parameter matrices of the PTF. We simulate (5.17) with x0 ^ 0 to 

obtain the position qi of the first mass, the position g2 of the second mass, and the 

velocity v2 of the second mass, where U\ and u2 are realizations of white Gaussian 

processes with mean 0 and variance 1. 

First, we consider the SISO PTF from q\ to v2 and use LS with the //-Markov 

model structure (5.18) of relative degree 0 to estimate the first 4 (scalar) Markov 

parameters of the PTF from qi to v2. For 10 realizations of 1000 samples of each u, 

we construct £7- and compute the average estimation error £7- over all u. Plotting £7-

as a function of the //-Markov model order nmod in Figure 5.4 shows that the Markov 

parameters are not correctly estimated for all nmod from 1 to 15. This is expected 

because qi and v2 are corrupted by contributions from both U\ and u2. 
T 

Next, we consider the two-input, one-output PTF from Qi Q2 to v2 and use 

LS with the //-Markov model structure (5.18) of relative degree 0 to estimate the first 
r i T 

4 (2 x 2) Markov parameters of the PTF from qx q2 to v2. For 10 realizations 

of 1000 samples of each u, we construct £7- and compute the average estimation error 

er over all u. Plotting £7- as a function of the //-Markov model order nmocj in Figure 

5.5 shows that the Markov parameters are correctly estimated for nmo& > 4. 

5.6.2 Consistency of the estimated MIMO PTF 

We now investigate the effect of output noise on the accuracy of the identified PTF 

by adding noise to the output measurements. As shown in Figure 5.6, we assume that 

measurement yi is corrupted by white, zero-mean Gaussian noise wt and we assume 

that each measurement jjj is corrupted by white, zero-mean Gaussian noise f j_ m , 

where i E { 1 , . . . , m} and j G {m + 1 , . . . ,p}. Hence, the measured pseudo-inputs 
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4.5 

> 4 

3.5-
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2.5 

2 

1.5 
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0 

9 

o 
o ° o 0 

o 
o o 

O o ^> 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

fi-Maxkov model order w m o j 

Figure 5.4: Error in the estimated Markov parameters of the SISO PTF from qi to 
v<i as the yU-Markov model order increases. 

f [i:m] are given by 

f[l:m] = y[hm] + V[l:m], 

and the measured pseudo-outputs £[m+i:p] are given by 

€[m+l:p] — y[m+l:p] + ^[l:p-m]> 

Since the pseudo inputs are not realizations of white random processes, LS does 

not yield consistent estimates of the Markov parameters. Hence, for comparison, we 

use both MIMO LS and MIMO QCLS with the yu-Markov model structure (5.18) with 

^mod = 4 and relative degree 0 to estimate the first fj, = 4 Markov parameter matrices 
T 

of the PTF from <?1 <?2 to V2- To obtain consistent estimates, QCLS requires 

88 



www.manaraa.com

3 4 5 6 7 8 

//-Markov model order ^ m o ( j 
10 

Figure 5.5: Error in the estimated Markov parameters of the MIMO PTF from 
[Qi Q2] to v2 as the //-Markov model order increases. 

p-m 

Figure 5.6: Effect of output noise on PTF identification. 
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knowledge of the noise autocorrelation to within a scalar multiple, as discussed in 

Appendix B and in [50]. 

We simulate (5.17) with x0 ^ 0 to obtain the position qi of the first mass, the 

position q2 of the second mass, and the velocity v2 of the second mass, where u\ 

and u2 are realizations of white Gaussian processes with mean 0 and variance 1. We 

choose vi, v2, and W\ so that the signal-to-noise ratio (SNR) of each measurement is 

10. For LS and QCLS, we let fi = 4 in (5.18) and estimate the Markov parameter 
r "lT 

matrices of the PTF from 9i Q2 to v2. We use the estimated and true Markov 

parameter matrices to compute ST, which we average over 10 noise sequences and 

10 input sequences u to obtain er- The estimates provided by QCLS in Figure 5.7 

appear consistent, while the estimates provided by LS do not. This result is expected 

since the pseudo-inputs q± and q2 have colored spectra. 

* 

10 

•fc 
10" 

10 

i 
• < ' 

< LS 
o QCLS 

10' 
Number of data samples I 

10' 

Figure 5.7: Consistent estimation of the PTF from [qi q2] to v2, where white, un­
corrected noise is added to all sensor measurements 
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5.7 Conclusions 

In this chapter, we defined a MIMO PTF to relate sets of output measurements 

and provided conditions on the number of excitations required to exactly estimate 

a MIMO PTF. We also provided necessary and sufficient conditions under which a 

MIMO PTF is defined, as well as lower bounds on the order and relative degree of 

the MIMO PTF. Using a simulated mass-spring-damper system, we demonstrated 

that a MIMO PTF can be estimated exactly if no noise is present in the system. 

By developing and applying a MIMO quadratically constrained least squares (QCLS) 

identification algorithm, we demonstrated that a MIMO PTF can be estimated con­

sistently in the presence of output noise if the autocorrelation of the output noise is 

known to within a scalar multiple. 
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C H A P T E R VI 

Conclusions and Contributions 

6.1 Conclusions 

In this dissertation, we proposed several approaches for output-only fault detec­

tion. 

First, we described the adjacent moving window peak detection (AMWPD) ap­

proach to detect an abrupt change in a noisy signal in real-time. We characterized the 

computational requirements of the AMWPD approach and provided techniques to re­

duce the computational complexity of the AMWPD approach. We also compared the 

AMWPD approach with existing techniques and showed that the AMWPD approach 

provides fewer false alarms and comparable detection speed. 

Second, we applied a modified tabu search and probabilistic neural network (mTS 

+ PNN) approach to classify tool wear in the shaving process. We defined novel 

features that we used in the mTS + PNN approach to yield improved classification 

accuracy. We also compared the mTS + PNN approach with an existing feature ex­

traction and selection approach and showed that the mTS + PNN approach provides 

higher classification accuracy and requires less computational time. 

Third, we characterized pseudo transfer functions (PTFs) that we use to detect 

faults in linear, time-invariant systems. For a system with one excitation and two 

outputs, we provided the order and relative degree of the single-input-single-output 
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(SISO) PTF and showed that the estimated PTF equals the true PTF if no noise is 

present in the data. We also applied quadratically-constrained least squares (QCLS) 

to estimate the PTF consistently for zero-mean output noise with known covariance. 

Finally, we showed that a change in the system dynamics can be reflected by a change 

in the estimated PTF. 

Fourth, we extended the PTF approach to linear, time-invariant systems with 

multiple excitations and more than two outputs. We provided an upper bound on the 

order and relative degree of each entry of the multiple-input-multiple-output (MIMO) 

PTF and showed that the estimated MIMO PTF equals the true MIMO PTF if 

no noise is present in the data. Finally, we developed a MIMO QCLS technique 

to estimate the MIMO PTF consistently for zero-mean output noise with known 

covariance. 

6.2 Contributions 

This dissertation has four main contributions. First, we developed, validated, and 

implemented the AMWPD approach, which yields few false alarms and fast detection 

time, to detect an abrupt change in a noisy signal in real-time. Second, we defined 

key features that we used to classify the tool wear in a shaving process. We also 

applied the mTS + PNN feature selection and clustering approach to achieve fast 

and accurate tool wear classification. Third, we defined a SISO PTF, which requires 

minimal assumptions about the excitation and output noise, to detect a fault in a 

linear system that has a single excitation and two outputs. Fourth, we defined a 

MIMO PTF to detect a fault in a linear system that has non-unit-rank excitation 

and more than two outputs. 
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6.3 Proposed Future Work 

Future work can be conducted in each area addressed by this dissertation. A short 

summary of some possible directions for future research is provided below. 

The AMWPD approach should be tested on other applications with data from 

other types of output measurements. Also, the sensitivity of the AMWPD approach 

to the spectrum of the measurement noise must be investigated to quantify the robust­

ness of the AMWPD approach to non-white, non-Gaussian noise. Finally, extensions 

of the AMWPD approach to real-time detection of other types of anomalies (i.e., an 

increase in variance or change in spectrum) could provide more comprehensive fault 

detection capability. 

Due to time and cost constraints, the mTS + PNN approach was only validated 

on data from a single tool. Hence, data from additional tools should be used to 

confirm these results. Also, future research should investigate how many tools must 

be used for training to ensure sufficient capability to classify data from a tool that has 

not been used to train the mTS + PNN approach. Furthermore, the mTS + PNN 

approach could be tested on other types of manufacturing applications with other 

types of output measurements. Finally, future work should investigate the effect of 

the activation function in the pattern layer on the accuracy of the classification result, 

perhaps comparing the proposed activation function (3.18) with a hyperbolic tangent 

function or a radial basis function. Similarly, computational time and accuracy should 

be compared if the activation function in the output layer is nonlinear. 

The sensitivity and robustness of the PTF fault detection approach must be com­

pared with existing methods for fault detection, including statistical process control 

techniques, fault detection using standard system identification approaches, and fea­

ture extraction, selection, and classification approaches. Identification of PTFs for 

nonlinear systems, especially systems with Hammerstein or Wiener nonlinearities, as 

shown in Figure 6.1, is also a subject of future work. Furthermore, additional experi-
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u 
H -> G •* W 

y 

•* ID 

Figure 6.1: Identification of a system with linear dynamics G and static Hammerstein 
H and Wiener W nonlinearities. 

mental validation of the PTF approach on aerospace, civil, and mechanical structures 

would motivate implementation and commercialization. 

Consistent identification of PTFs is another area for future study. Although 

this dissertation considers both standard and quadratically-constrained approaches 

to batch least squares identification of time-series models, other identification ap­

proaches should also be considered, especially instrumental-variables [116]. Although 

we applied recursive least squares to identify a PTF online in [56], additional inves­

tigation into the consistency of online PTF identification techniques is required. 

Figure 6.2: Illustration of a how a network of sensors can be used for fault localization. 

Finally, fault isolation (damage localization) using the PTF approach is an area 

for future study, especially in structural health monitoring applications. As shown 

in Figure 6.2, a MIMO PTF can relate a large number of output measurements. 
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Assume a crack occurs in the wing in Figure 6.2. If the entry of the MIMO PTF 

relating output j to output k changes more than the other entries of the MIMO PTF, 

then the crack may have occurred between outputs j and k. However, simulated and 

experimental data must be used to examine this hypothesis. 
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APPENDICES 
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APPENDIX A 

Proofs of SISO P T F Identities 

Key Lemmas 

We define 

a a0 cm ••• «„_! 

Ac 4 SAS~l = 0(n-l)xl In-l 

—a 

B±SB = 0 ••• 0 1 

For % = 1,2, we define 

C-C.2 G j O — A,o A. i " ' ' A,ra-i A.nO1 
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For j = 0 , . . . , n, we define 

* 4 S 
ej+i, 0 < j < n - 1, 

- a , j = n, 

where 

efc 

0(fc-i)xl 

1 

0(n-fc)xl 

Finally, for i, j = 0 , . . . , n, we define 

Jij ~ Xi-^-c' 

Lemma A.0.1 For all i,j = Q,...,n, 

Proof A.0.1 Note 

Ji,j ~ Jj,i 

Ai=l 

-j+i 

—a 

-^Ai-1 

—a 

-c?A{-

0<j<n-l, 

3 = n. 
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If i = j , the result follows immediately. 

IfO<i<n — 1 and j = n, 

Ji,n — e i + 1 

-a 

J 4J-1 - a ^ -

— a Ac — fnti 

IfO<i<n-j-l and 0 < j < n - 1, 

A,j = eI+i 

c j + i 

, T i J " l - a T i 4 j 

- e t + j + l - e j + l 

& t + l 

T AI-1 -a1 A 

~ JJ>»' 

If n — j <i <n — 1 and 0 < j < n — 1, 

/ • i J — e i 

C J + I 

, T i J - l - a T A J
c 

= - a T A ^ - " = eJ+1 

c . + i 

T 4 1 - 1 -aTA! 

— / j , t * 

Proposition A.0.1 

• 

^ A , i C 1 A * = ^ ^ , I C 2 A i . 
i = 0 i=0 

(A.l) 

Proof A.0.2 Because (A, S) is controllable, from (4-10) there exists a nonsingu-

lar S that transforms A, B, C\, and C-i into controllable canonical form. Hence from 
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Lemma A.0.1 we have 

E &/?i A* = £>,,CC)1^S 
i = 0 i = 0 

=x>* 
t=0 

"n-1 

E (A,JeJ+l) ~ 01,"°? 
.1=0 

A'S 

It lb 

= E E & , A , / ^ 
1=0 j=0 
n n 

= E E ^ A / ^ 
I = 0 j=0 

ra 

= E ^ 
i = 0 

'n -1 

E feeJ+l) - /̂ .™aT 

.J=0 

i4J5 

= E ^ C ' c , 2 ^ ^ 
i=0 
n 

= ^ ^ ( 7 2 ^ 
i = 0 

Proposition A.0.2 For all k = 0 , . . . , n, 

D 

2^ , #2,i#l,i-k = / JPl,tH2,i-k-
i=k i=k 

(A.2) 

Proof A.0.3 VFe consider the cases k = n, k = n—1, and k = 0. TTje remaining 

cases are proved in a similar fashion. 

For k = n, 

2_^ @2,iHl,i-n — P%nDi = ft,nA,n — A,n-D2 — / _, Pl,iH2,i-n-
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For k — n — 1, 

/ J /32,iHl,i-n+l = p2,n-lDi + fanCiB 
i=n—l 

For k = 0, we define 

— 02,n-lPl,n + P2,nCc,lBc 

= p2,n-lPl,n + (h,n01,n-l ~ A,nft,n«n-1 

= fll,n-l@2,n + A,nCc,2-5c 

= Pi,n-iD2 + /3ltnC2B 
n 

l2,i-n+l-
i=n—l 

S J J 

0, i = 0,0 < j < n - 1, 

1, i = 0,j' = n, 

e J + ^ - ^ n , 1 < i < n, 0 < j < n - 1, 

—aTA!._1en, 1 < i < n, jf = n, 

and note that, using a proof similar to the proof of Lemma A.0.1, it can be shown 
that £hJ = £Jjt. Hence, 

E lh,,Hl,, = 02,oPl,n + P2,lCc,lBc + • • •+02,nCc,1A^-1Bc 

= fcfiPl.n + E /%,, 

= E E A,.^.^.J 

= E E A..A.^..J 

z=0 3=0 

n 

= /3i,o/82,n + E ' 8 i . « 

E A^eJ+i "ft,""1 

j = o 
Air1 Be 

J = 0 
A r ' B c 

= /3i,o/32,n + Pi,iCc,2Bc + •••+ Pi:„Cc,2A^-1Bc 

n 

= E PUt^2,f D 
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Proof of Proposition 4.4.1 

Assume I > In. Then 

jv2r1 = 

EIU/^Ci^ 

£JUft,A^"1 + i 

(A.3) 

iVir2 = 

£IU/?U^ 

EJU/V^1-"-1-" 

(A.4) 

Prom (A.l), it follows that the first component of (A.3) and the first component of 

(A.4) are identical. Multiplying (A.l) on the right by Aq~l implies that, for q G 

{2,3,... ,1 — n}, the qth component of (A.3) and the 9th component of (A.4) are also 

identical. • 

Proof of Proposition 4.4.2 

Assume I > 2n. Then 

N2Hi 

<r2,i(M) ••• <72,i(l,n + l) 0 

a2,i(l-n,l) . . . cr2,i(l,l) . . . <72,i(l,n + l) 
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and 

NXH2 = 

0-1,2(1,1) ••• a1>2(l,n + l) 0 

a i ) 2 ( / - n , 1) . . . 0-1,2(1,1) ••• 0x2(1, n + 1) 

are Toeplitz, where 

aj,k{ris) — / J Pj,iHk,i+r-a-

i=s—l 

For q G { 0 , 1 , . . . , Z — n — 2}, multiplying (A.l) on the right by AqB implies that, for 

r e { 2 , 3 , . . . , Z - n } , 

02,i(r, 1) = ^i,2(r, 1). 

Furthermore, setting k = s — 1 in (A.2) implies that, for s 6 {1, 2 , . . . , n + 1}, 

0-2,1(1, s) = <7i)2(l,s). • 

Interesting Matrix Equality 

We define 

0 lx(n-l) 

/n-1 0, ( n - l ) X l 

e i n x " , e3 = 

° 0 - l ) x l 

1 

. °(n-j)xl . 

€ R n , Rj — 

0 

0 

1 0 

0 1 

0 

0 

JXJ 

U„ ̂  RkN
k = 

Rn-k 0(n-/b)xfc 

°fcx(n-fc) °kxk 
Lk 4 NkRk = 

Ofcxfc 0, 'fcx(n—k) 

°(n-fc)xfc R-n-k 
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Furthermore, let a G Cn denote the nth column of A and, for j = 1,..., n, define 

ra-1 

Q, = Un-3 + £ (ejA^a) L, 
i = i 

Lemma A.0.2 For every positive integer k, 

fc-i 

Akb = Nkb + Y,(elNlb)Ak-l~1a. 
i = 0 

Proof A.0.4 We prove (A.5) by induction. For k = 1, 

Ab=(N + ael)b 

= Nb + {elb)a 

= Nb + (elN°b)A°a, 

where N° = A0 = In. From (A.5), we have 

(A.5) 

Ak+1b = A(Akb) 
fc-i 

Nkb + ^{elNlb)Ak-l-la 

fc-i 

= ANkb + AY^{,elNlb)Ak~l-la 
i=0 

fe-i 

= (N + ael) Nkb + J2(elN'b)Ak"a 

1=0 

fe-i 

= Nk+1b + {elNkb)A°a + Y^^lNlb)Ak~la 
i=0 

k 

= Nk+1b + Y^{elNlb)Ak-la. • 
i = 0 
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Propos i t i on A .0 .3 Let b, c G C n and let 

Then 

0 0 - -

1 0 •• 

0 1 •• 

• 0 ai 

• 0 a2 

• 0 a3 

0 0 

G C 

1 an 

b Ab ••• A"-1^ c = c Ac ••• An~1c 
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Proof A.0.5 From Lemma A.0.2, we have 

b Ab ••• An~1b ]c 

--[b Nb+(e£b)a ••• Nn-1b + J2"=o(enN'b)An-t-2a]c 

-- [ b Nb ••• iV"-ift ] c + [ 0 n x l (eTb)a ••• E ^ o t ^ ' i ' ) ^ — 2 « ] c 

61 0 

62 bi 

ci 

C2 

Cn 

+ [o„xi (elb)a ••• (eTiV"-26)a ] c 

bn • • • 62 bi 

+ [ 0n x 2 (<£6)Aa • • • (eZN"-*b)Aa ] c+ • • • + [ O ^ ^ . D (eT&)A"-2a ] c 

61 0 

62 61 

0 

Cn 

+ [ 0 „ x i b„a • •• 62a 

bn ••• 62 61 

+ [ 0n x 2 bnAa ••• b3Aa ] c+- - -+ [ 0nX(n_1) M " " 2 a |c 

bici 

62 ci + 61C2 

bnCl + • • • + 61 Cn 

+ (bnC2 H h &2Cn)a + (bnC3 H h 63c„)Ao H h bnCnAn 2 a 

6 T t / n _ i c 

6T£/„_2c 

6T t / 0c 

b T Q i c 

6 T Q„c 

n - l 

£ + £(6TL,c)A*-1a = 

6Tt/„_lC + faT ( E ^ i 1 {ejA^a) L,) c 

6Tr/n_2c + 6T (Er^i1 (cjA-io) L.) c 

6T[/0c + 6T ( E ^ i 1 ( e j A - i a ) L.) c 

= [ c Ac ••• An~1c ] b, 

where the last equality follows from the fact that Qi,..., Qn are symmetric. 
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APPENDIX B 

MIMO QCLS with a /i-Markov Model Structure 

Problem Formulation 

We consider identification of a MIMO system, where the noise-free input is u0(k) G 

Rm and the noise-free output is yo(k) G MP. Hence, 

A(q)y0 = B(q)u0 (B.l) 

with transfer function 

where A G Wxp[q] has full normal rank, B G Rpxm[q], k = 0 , . . . , / is a positive 

integer, A and B are left coprime, and every entry of G(q) is a proper function of q. 
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We write (B.l) as a yu-Markov time-series model 

0 = a0y0{k) + aMy0(fc - A*) H ^ ak'Vo(k - k') 

- H0u0(k) H^iUo(k - n + 1) 

- B^u0(k - fj) Bk,u0{k - k'), (B 

where 

kf = fi + n-l, 

and for i = 0, /x, jtx + 1 , . . . , fc', a.% e K. 

Applying the vec operator to (B.2), we obtain 

0 = a0yo{k) + a^yoik - n) H h ak>yQ{k - fc') 

- {uo(k) ® Jp) vec(Fo) (i^"(fc - /x + 1) <g> Ip) vec(#M_x) 

- (UQ {k - /x) ® 7P) vec(5M) (wj (A; - £/) <g> Jp) vec(Bfc#). (B 

Errors-In-Variables Formulation 

We write (B.3) as 

0o (k)d = 0, 
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where 

Mk) = 

Vo(k - /*) 

yj(k - k') 

—u0(k) <g> Ip 

-u0(k — k') ® Ip 

rni{n+n)+n+l] xp 

and 

0 4 

a0 

Oik' 

vec(H0) 

vec(i?M_i) 

vec(5M) 

vec(5fc/) 

Assuming I > k", we define 

$o 

<t>Z(k') 

$"(0 

n+/i)+n+l 

-/j-n+2)x[pm(n+^)+n+l] 
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so that 

$00 = 0, 

where 

A;"^(^ + n ) ( m + l ) + ^ i l - 2 . 
P 

Next, we assume that yo(k) is corrupted by output noise w(k) and we assume that 

uo(k) is corrupted by input noise v(k) so that the measured output y{k) is given by 

y(k) =y0(k)+w(k), 

and the measured input u{k) is given by 

u(k) = u0(k) +v(k). 

Hence, 

y(k) = G(q)u0(k)+w(k) 

= G(q)u{k) - G(q)v(k) + w(k). (B.4) 

We write (B.4) in regression form 

A(q)y(k) - B(q)u(k) = A(q)w(k) - B(q)u(fc), 

or 

0T(£;)0 = 1>T(k)6, 
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where 

and 

<f>{k) = <h(k) + il>(k), 

1>(k)± 

wT(k) 

wT(k — fx) 

wT(k - k') 

—v(k) <S> Ip 

-v(k - k') ® Ip 

The regression matrix $ is given by 

$ = $0 + *, 

im(n+fi)+n+l] xp 

where 

tf 

i/jT(n + n - 1) 

tfT(0 

—/i—n+2) x [pm(n+/j)+n+l] 

Definition B.0.1 For all I > k", the input sequence {uo(k)}k=k,, is persistently 

exciting for G(q) if rank <50 = pm(n + //) + n. 

Definition B.0.2 For all / > k", the input sequence {uo(k)}l
k=k„ and the noise 

sequences {w(k)}l
k=k„ and {v(k)}l

k=k„ are jointly persistently exciting for G(q) if 

rank <& = pm(n + LI) + n + 1 
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For K > k', let <JPm(n+n)+n,K be the second-smallest singular value of 

_ <Pl(k") _ 

Definition B.0.3 For all I > k", the sequence {uo(k)}l
k=k„ is infinitely persistently 

exciting for G(q) if there exists e > 0 such that, for all K > k', crpm(n+/i)+riiK > e. 

QCLS for MIMO Systems with Known Noise Covariance 

The QCLS problem is given by 

min J(§), (B.5) 

6€D{N) 

Where N 6 ^\pm(n+n)+n+l]x\pm(n+^+n+l] ig s y m m e t r i c a n d 

V{N) ±lde RPm(n+„)+n+l . jpNQ = A 

li N = NLs, solutions of the QCLS problem (B.5) are solutions of the standard least 

squares problem with cto = ± 1 , where 

1 Ulx[pm(ra+/i)+n] 

U[pm(n+/j)+n] x 1 'J\pm(n+n)+n] x \pm(n+/j,)+n] 

Note that the 9 which solves the QCLS problem (B.5) corresponds to the generalized 

eigenvector associated with the smallest positive generalized eigenvalue of (M,N), 

where 

M 4 i $ T $ . 

For the remainder of this chapter, we assume that {w(£0}£lo and {v(A;)}^0 are 

stationary, have finite second moments, and are jointly ergodic random processes in 
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the sense that, for all p, a € {0,1, 2} and for all i, 

1 ' 
E[wp(i)va(i)] = lim - S^ wp(k)va(k)wpl. 

fc=0 

For k' < k < I, we define 

i? 4 E[^(A;)^T(A;)] = (B.6) 

and note that R is positive semi-definite and, since w(k) and v(k) are stationary, R 

is independent of k. 

We define 

M0 ^ i$J$0 , 

^#o — Ihn M0, 
£—>oo 

and 

^ 4 lim M, 

where the limits are defined when they exist. 

Proposition B.0.4 Assume that {uo(k)}l
k=0 and {yo(k)}l

k=0 are bounded and 

satisfy (B.l). Also assume that w(k) and v(k) have zero mean. For all I > k"', as­

sume that {uo(k)}k=k„ is persistently exciting for G(q) and assume that {uo(k)}l
k=k„, 

{w(k)}l
k:=kll, and {*>(&) }&=&" are jointly persistently exciting for G(q). Finally, assume 

that M0 + R > 0. Then, for all r] > 0, QCLS with N = rjR provides an unbiased 

estimate 0 of 6. 
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Proof B.0.6 The proof is analogous to the proof of Proposition 9.3 in [50]. • 

Proposi t ion B.0.5 Assume that ^ 0 exists. Assume that {uo(k)}l
k=0

 a n d {yo{k)}l
k=o 

are bounded and satisfy (B.l). Also assume that w(k) and v(k) have zero mean. For 

all I > k", assume that {uo(k)}l
k=k„ is infinitely persistently exciting for G(q) and 

assume that {uo{k)}l
k=k», {w(k)}l

k=:k„, and {v(k)}l
k=k„ are jointly persistently exciting 

for G(q). Finally, assume that Jt > 0. Then, for all rj > 0, QCLS with N = r]R 

provides a consistent estimate 6 of 6. 

Proof B.0.7 The proof is analogous to the proof of Theorem 10.11 in [50]. • 

Example: Noise with Known Covariance 

Consider the two-input, one-output, asymptotically stable, non-minimum phase 

system with minimal realization (A,B,C,D) given by 

A = 

C = 

0 1 

-0.7 0.1 

0.3 1 

, B = I2, 

, £> = 0 i x 2 . (B.7) 

To quantify the difference between the estimated and actual Markov parameter ma­

trices, we define 

F A\\T-T\\2 
T IITH, ' 

where 

r 

vec (H0) 

vec (H3) 
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and T is an estimate of T. 

We investigate the effect of noise on the accuracy of the identified MIMO TF. We 

simulate (B.4) with 

G(q) = C(qI- A)'1 B + D, 

where A, B, C, and D are given by (B.7), «i and w2 are realizations of white Gaussian 

processes with mean 0 and variance 1, and we choose vi, V2, and w so that the signal-

to-noise ratio (SNR) is 3. For comparison, we estimate the Markov parameter matrices 

using standard least squares (LS) and QCLS with known noise covariance 

R = 
0.385/3 03x12 

0 1 2 x 3 0.111/12 

For LS and QCLS, we let fx = 4 and estimate the Markov parameter matrices of 

the TF. We use the estimated and true Markov parameter matrices to compute er, 

which we average over 10 noise sequences and 5 input sequences to obtain £?. Figure 

B.l shows that QCLS provides consistent estimates of the TF, while LS does not. 

For the result shown in Figure B.l, we note that x0 ^ 0 and nmod = 4. 
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10" 

Figure B.l: Error in the estimated TF using MIMO /x-Markov QCLS, where zero-
mean, white, uncorrelated noise is added to u\, u%, and y. 
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APPENDIX C 

Conditions for Consistent Estimates 

Problem Formulation 

Un 
G 

u >®^> ID 

>>o 

J ' A . w <-H®* 

Figure C.l: Errors-in-variables approach to system identification. 

We consider the identification problem shown in Figure C.l, where the true input 

UQ and true output yo are corrupted by input noise v and output noise w, respectively, 

so that the measured input u = u0 + v and the measured output y = y0 + w. We 

assume that G has order n and is linear, time-invariant, stable, and causal. We 

also assume that the number of data samples / 3> n and only consider batch (not 

recursive) least squares (LS) and quadratically-constrained least squares (QCLS). 
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Consistent Estimates Using LS 

First, we consider estimation of the coefficients a0,...,an,bo,...,bn of the auto-

regressive moving average (ARMA) time-series model 

aoyo(k) H h any0(k - n) = b0u0(k) H \- bnu0(k - n). (C.l) 

For consistent and unbiased estimates of the coefficients, the estimated model order 

h = n and v(k) = 0. Furthermore, one of the following conditions must be satisfied 

• White equation error: The data satisfies 

aoy(k) H 1- any(k - n) = b0u(k) -\ h bnu{k - n) + w(k). (C.2) 

• Finite impulse response: The data satisfies 

aQy(k) = b0u(k) -\ h bnu(k — n) + a0w(k). (C.3) 

Second, we consider estimation of the first [i Markov parameters H0,..., i ^ - i of 

the /x-Markov time-series model [117] 

0 = a0y0(k) + a^yo^k - y) H 1- ak>yo(k - k') 

- H0u0{k) Hti-xu0{k - fi + 1) 

- b^u0(k - LI) bk,uQ{k - k'), (C.4) 

where 

k' = /j, + n — 1. 
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For consistent and unbiased estimates of the Markov parameters, the following con­

ditions must be satisfied 

• h > n. 

• v(k) = 0. 

• UQ is a realization of a white random process. 

• w is a realization of a stationary random process. 

Consistent Estimates Using QCLS 

First, we consider estimation of the coefficients of the ARM A time series model 

(C.l). For consistent and unbiased estimates of the coefficients, the following condi­

tions must be satisfied 

• ft = n. 

• w and v are stationary, have zero mean and finite second moments, and arise 

from jointly ergodic random processes. 

• Mo is infinitely persistently exciting (see Definition B.0.3). 

• «o, v, and w are jointly persistently exciting exciting (see Definition B.0.2). 

• The orders of the coloring filters of v and w are less than h + 1. 

• The noise covariance R, defined in (B.6), is known to within a scalar multiple. 

Second, we consider estimation of the first fi Markov parameters H0,-.., i?M-i of 

the //-Markov time-series model (C.4). For consistent and unbiased estimates of the 

coefficients, the following conditions must be satisfied 

• h> n (the case h > n is under investigation). 
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• w and v are stationary, have zero mean and finite second moments, and arise 

from jointly ergodic random processes. 

• UQ is infinitely persistently exciting (see Definition B.0.3). 

• u0, v, and w are jointly persistently exciting exciting (see Definition B.0.2). 

• The orders of the coloring filters of v and w are less than h + 1. 

• The noise covariance R, defined in (B.6), is known to within a scalar multiple. 

Conditions under which Solution to Discrete-Time Lyapunov 

Equation is Toeplitz 

Proposition CO.6 If R is symmetric and if Xi(A) ^ l/Xj(AT) for all i, j , then 

the solution Q to the discrete-time Lyapunov equation 

Q = AQAT + R (C.5) 

exists and is unique and symmetric. 

Proof C.0.8 Since Xi(A) ± l/Xj(AT) for all i,j, the solution Q to (C.5) exists 

and is unique [118]. We show that Q is symmetric by contradiction. Hence, we 

assume R ^ RT and Q = QT. From (C.5), we have 

RT = QT- AQTAT, 

= Q- AQAr, 

= R, 

which is a contradiction. • 

121 



www.manaraa.com

Proposition CO.7 If A and B are written in controllable-canonical form, that 

is, 

A± 

0 

0 

0 

Ol 

1 

0 

0 

a2 

0 •• 

1 •• 

0 •• 

a3 •• 

• 0 

• 0 

• 1 

• an 

, B 

0 

0 

0 

1 

where {az}"=1 6 M, and if XZ(A) ^ 1/A.,(yl) for all i,j, then the solution Q to the 

discrete-time Lyapunov equation 

T , D D T Q = AQAL + BB (C.6) 

exists and is unique, symmetric, and Toeplitz. 

Proof CO.9 Prom Proposition C.0.6, it follows that the solution Q to (C.6) exists 
and is unique and symmetric. Prom (C.6), we have 

91,1 9 l ,n 

<M-1,1 ••• ? n - l , n 

<7n,l ' ' ' 9n,n — 1 

52,2 

0 1 0 0 91,2 

92,n 

0 0 ••• 1 0 

1 1 0-2 0-3 ' ' ' &n 

£r=la*92,t 

9n-l ,2 

1n,2 

E n 

Prom (C.7), we observe that, for i = 1 , . . . , n, 

<7l,n Sr=la*9lti 

•?n—l,n 2_/«=l ^«9n—l,i 

i = l aiQn,i 

(C.7) 

9t+i , i+i j i <n, 

1 + ai (a^i.1 H + an<?i,n) H h an (ai?„_i H h an<7n,n), i = n. 
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Furthermore, for 1 < % < j < n, 

QU = S 
Qi+ij+u i < n, 

aiQi+i,i -\ 1" anqi+i,n, i = n-

Hence, Q is Toeplitz. D 
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APPENDIX D 

Max Rank of Regressor Matrix Due to Nonzero 

Initial Conditions 

Problem Formulation 

Consider the time-series model 

y(k) = -AlV(k - 1) Any(k -n) + B0u(k) + ••• + Bnu{k - n), (D.l) 

where k = n, n + 1 , . . . , / - 1, I > n, y(k) € W, u(k) E Rm, Ax,..., An e M?xp, and 

B0,..., Bn G Rp x m . We decompose y(k) into its free and forced components, that is, 

y(k) = yivee(k) + yiorced(k), 

where for k > n, ytree(k) and yforced(^) satisfy 

Vtee(k) = -Aij/freeCA; - 1) Anybee(k - n) 
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and 

Vforcedik) = -Aiyiorced(k - 1) - • • • - Anyioiced(k - n) + B0u(k) + • • • + Bnu(k - n). 

We define 

^free — Vfreein) 2/free(™ + 1) • • • ?/free(̂  ~ 1) 
jx(l-n+l) (D.2) 

$ f r M = 
$ ytv, g_ jn)[pn+m(ra+l)]x(J—n) (D.3) 

^2/free 

J/free(w - 1) l/free(n) 

Vfreein ~ 2) l/free^ - 1) 

Vteeil ~ 2) 

2/free(J ~ 3 ) 

?/free(0) Vfreeil) ' • ' Vfreeil - Tl - 1) 

x(l—n) 

and 

e± -Ai • • • —An BQ • • • Bn 
3x[pn+m(n+l)] 

so that 

^^•free = ^free- (D.4) 

We also define 

1 forced — 2/forced(n) Vforce&in + 1) • • • 2/forced(^ ~ 1) 

px(l-n+l) 

(D.5) 
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$ A. 
forced — 

$. 2/forced P TO [p"-+"^("-+l)] x (̂ —") (D.6) 

$ yforced 

Vforcedin ~ 1) 2/forced(™) 

Viorcedin - 2 ) 2/forced(« ~ 1) 

and 

$ 4 

Vforcedil ~ 2) 

2/forced(^ ~ 3) 

?/forced(0) ?/forced(l) ' • • 2/forced(J ~ fl - 1) 

x(Z-n) 

w(n) w(n + 1) 

u(n — 1) «(n) 

so that 

u(l - 1) 

u(Z - 2) 

u(0) «(1) ••• u(l-n-l) 

«m(t!+l)x(!-n) 

0$ forced — ^forced (D.7) 

Adding (D.4) and (D.7) we obtain 

6$ = Y, (D.8) 

where 

$ 4 = $free + forced € R^+Mn+DMl-n) ^ ( D g ) 

1 2 6 
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$ 4 

y(n - 1) y(n) 

y(n - 2) y{n - 1) 

y{i - 2) 

y(i - 3) 

2/(0) j/(l) ••• y ( Z - n - l ) 

^ ]^pnx(i-n) 

and 

* — •'free ~r ^forced — y(n) y{n + l) ••• y(l - 1 ) (D.10) 

State-Space Modeling 

Consider a minimal state-space realization of the time series model (D.l) given by 

x(k + l) = Ax(k) +Bu(k), x(0) = x0, (D.ll) 

y(k) = Cx(k) + Du(k), (D.12) 

where k = 0 , 1 , . . . , I - 1, A G E n x n , 5 e Rn x m , C E Wxn, and £> <= MpXm. We note 

that x(k) can be decomposed as 

XyK) = XfreeyK) + 3;forced("'J) 

where xtree(k) and Xforced(A;) satisfy 

Xfree(A; + 1) = Ax^k), £free(0) = XQ, 

Vfree{k) = Cxfree(k), 
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and 

f̂orced (k + 1) = Axiolced(k) + Bu{k), Xforced(O) = 0, 

Viorcedik) = Cxiorced(k) + Du(k). 

Furthermore 

and thus 

2/free(£0 = CAkx0, 

^Vree 

CAn'lx0 CAnx0 ••• CAl~2x0 

CAn~2x0 CAn~lx0 ••• CAl-3x0 

Cx0 CAx0 ••• CAl-n~lx0 

(D.13) 

We factor $yitee as 

$!/free = Inj,On(A,C)Kl-n(A,X0), (D.14) 

where 

Ot{A,C)± 

C 

CA 

CA i - 1 
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KAA,x0) = X0 Ax0 • • • A3
 XQ 

and 

I = 
1q,r ~ 

0 ••• 0 Ir 

; .•• .-• o 

0 ••• ••• : 

Ir 0 ••' 0 

G Rqrxqr. 

We factor $yforced as 

(D.15) 

^ytotced ~~ *n,pttU1 (D.16) 

where 

H 

'In—1 •*-n 

T~(-l-n-l 

H, 1-2 

(z ijpnxm(i-l)(l-n) 

u± 

U Om(i-i)xi 

Om(i-i)xi u 

o. 'm(/-l)xl 

0m(Z-l)xl ••• 0m(/-l)xl f 

tm(l—l){l-n)x(l-n) 
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u± 

u(0) 

u(J - 2) 

)Xm(i-l) 

and for i = 0 , 1 , . . . , / — 2, 

ov A CAl-lB CA'-2B ••• CB D 0pxm(,_i_2) 

OCi(A,B)Intp D 0pxm(Z-i-2) 
« m ( i - l ) (D.17) 

Conditioning of $ 

Proposition D.0.8 

rank($free) = rank($J/free) = iank(JCi-n(A,x0)). 

Proof D.0.10 Since IntP is nonsingular, rank(On(A, C)) = n, and /C/_n(A, x0) 

has n rows, from (D.3) and (D.14) it follows from Sylvester's inequality that 

rank(/Q_n(A, x0)) > rank($free) 

= rank($Wree) 

= Taak(IntPOn(A, C)K\-n{A, x0)) 

= TUDk(On(A,C)lCl-n(A,xo)) 

> rank(£>n(A, C)) + rank(/Cj_„(A, x0))-n 

= rank(/Q_n(A,x0)). D 

Let <7i($) > cr2($) > • • • denote the singular values of $, and let p(A) denote the 

spectral radius of A. We now examine the singular values 0j($) as the contribution 
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of 2/free to $ increases. 

Proposition D.0.9 Consider (D.l) with input {u(k)}l
kJQ and a sequence {xoil^i 

of initial conditions, where ||xot|| —> oo as i —> oo and, for all i, r = rank(/Q_n(^4, x0i)). 

Then 

ar(<f>i) 
0 as i —> oo, 

where 

$ i = Oj^free.i + ^forced, 

$free,i = 
In,pOn(A, C)Ki-n(A, X0i) 

0 

and 

OCi = | | X o i | | , 

Proof D.0.11 Using Proposition D.0.8, it follows that rank($free,i) = r. Since 
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(Tj(-) is continuous and at —> oo as i —• oo, we have 

CT r+i($j) O Y + l ^ ^ f r e e . i + $forced) 
l im T ^ T " = l im -: ! r -
i^oo oy($ j ) i-^oo Crr(al<Pfree,i + * forced J 

0"r+l($free,i + —^forced) 
= u m —7^ r^ r" 

i-oo cr r(O f r e e i l + — ̂ forced) 

_ Or+l($free,t) 

= 0. O 

Proposition D.0.9 shows that the condition number of <3> increases as the contri­

bution of the free response to $ increases relative to the contribution of the input 

u(jfc). 

Proposition D.0.10 Let M G RnXn be nonsingular and assume MAM*1 is a 

Jordan form matrix. Then (A, x0) is controllable if and only if A is cyclic and, for 

every eigenvalue A of A, the component of Mx0 corresponding to the lowest-right 

entry of the Jordan block associated with A is nonzero. 

Proof D.0.12 See [119], pp. 209-214. • 

Proposition D.0.11 Let U ^ 0 and let I > 2n. Then 

rank(#) + (I — n){m — ml + 1) < rank($j/forced) < rank(#). 

Proof D.0.13 Since IntP is nonsingular, it follows from (D.16) and Sylvester's 
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r 

inequality that 

rank(H) > rank($yforced) 

= rank(InjPHU) 

= rank(#£7) 

> rank(#) + rank(t7) - m{l - 1)(J - n) 

= vank(H) + (l-n)-m{l-l)(l-n). D 

Stochastic Analysis 

Lemma D.0.3 Let (3 G M, assume that A is asymptotically stable and (A, B) is 

controllable, and let Qp satisfy the discrete-time Lyapunov equation 

Qp = (32ATQpA + BBT. (D.18) 

Then tr Qp —> oo as /? | ^ j -

Proof D.0.14 Write Qp as 

OO 

Qp = ^2p2'AiBBTAlT. 

Let A G C be an eigenvalue of A such that | A| = p(A), and let v G C" be an eigenvector 

of AT associated with A such that v*v = 1. Since (A, B) is controllable, it follows 
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that rank XI-A B = n. Therefore, 

0 ^ 
XI-AT 

BT 

Xv — Xv 

BTv 

0 

BTv 

v 

Hence BTv ^ 0. Therefore 

oo 1 

t rQ p > v*Qpv = v*BBTv ^\f3X\2i -»• oo as P^-r 
i=0 PW 

Numerical Examples 

Example D.0.1 To illustrate Proposition D.0.9 for n = r = 2, let 

A = 
0.1 0.2 

0 0.5 
, B = 

1 

1 
(D 

C 1 0 , £> = 0. (D 

We choose / = 100 and initial condition 

X0i = Oii 
0.96 

-0.27 
(D 
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For each c^, we choose 10 Gaussian white noise input sequences u(k) with zero mean 

and standard deviation au = 1. Then we simulate (D.11)-(D.12) for each u(k) and 

each ^ using the minimal realization (D.19)-(D.20) with the initial condition in 

(D.21). Next, we construct $ and compute | 4 U for each u(k). Finally, we aver­

age | 4 | y for each c^. Figure D.l shows that yw: decreases as a increases, which 

demonstrates Proposition D.0.9 for n = r = 2. To illustrate Proposition D.0.9 for 

Figure D.l: Change in | 4 ^ | with ctj, averaged over 10 realizations of white noise u{k) 
with I = 1002. 

n = 2, r = 1, we choose / = 100 and initial condition 

X0i = OLi 
1 

0 
(D.22) 

For each aiy we choose 10 Gaussian white noise input sequences u(k) with zero mean 

and standard deviation au = 1. Then we simulate (D.11)-(D.12) for each u(k) and 

each ai using the minimal realization (D.19)-(D.20) with the initial condition in 
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^ ( • f r ) (D.22). Next, we construct $ and compute °2{,J for each u(k). Finally, we aver­

age ^ £ | T for each a*. Figure D.2 shows that ^Wt decreases as a* increases, which 
<Tl(*) <Tl(*) 

demonstrates Proposition D.0.10 for n = 2,r = 1. 

Figure D.2: Change in °2[<J with a,, averaged over 10 realizations of white noise u(k) 
with I = 100. 

Example D.0.2 To illustrate Lemma D.0.3 for n = 2, we choose f3 E [0, 2) and 

A and B as in (D.19) and compute tr Qp. To examine the behavior of the individual 

states x(k) as (3 approaches 2, we choose initial condition x0 = 

simulate 

0 0 . Next, we 

x(k + 1) = (3Ax{k) + Bu(k), x(0) = x0 (D.23) 

using a set of zero-mean, unity-variance Gaussian white noise input sequences {u(k)}l9®0. 

Then we define an "effective" initial condition x*(0) = rr(lOOO) associated with each 

white noise input sequence. For each (3 and each x0 = x*(0), we choose a zero-mean, 
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unity-variance Gaussian white noise input sequence {u(k)}l^}0 and simulate (D.23). 

Then we compute an estimate of the size of the state (the trace of the steady-state 

covariance of x(k)) for each /3, given by 

« t rE[xx T ] , (D.24) 

where 

x±\^x(i). (D.25) 

Repeating this process, we compute an average of a^, which we plot along with tr Qp 

in Figure D.3. Figure D.3 shows that <J% converges to tvQp as I increases. Figure D.3 

also shows that both a^ and t rQ^ approach oo as (3 f 2. 
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10 -

I 
+ trg,) 
O o* , J = 1000 
D o%, I = 10000 

1 1 ! 1 1 

+ -
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+ 
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+ 
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+• D : 

+ a 

, + + + D D O 

1 1 ( 

1.9 1.92 1.94 1.96 1.98 

P 

Figure D.3: Plot of a2
x and Qp versus f3 for n = 2, where a^ approaches oo as (3 

approaches 2 and o\ converges to Qp as I increases. 
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APPENDIX E 

Zeros of the Discrete-Time Transfer Function from 

Excitation to Acceleration in a 

Mass-Spring-Damper System 

Problem Formulation 

Consider the mass-spring-damper system shown in Figure E.l. The equations of 

motion for this system are given by 

x{t) = Ax{t) + Bu{t), (E.l) 

y(t) = Cx{t) + Du(t), (E.2) 

where x(t) = q(t) q(t) is the state of the system at time t, u(t) is the excitation 

at time t, and y(t) is the sensor measurement at time t. Assuming u(t) remains 
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constant between samples, we can discretize (E.l) to obtain 

x(k + l) = Ax(k) + Bu(k), (E.3) 

where h > 0 is the sampling interval, x(k) = x(kh), u(k) = u(kh), A = eAh, and 

Jo 

A / „AT B^ / eATdrB. 

Denoting y(k) = y(kh), (E.2) and (E.3) imply 

y{k) = Cx(k) + Du{k). (E.4) 

> q 

> u 

Figure E.l: Illustration of mass-spring-damper system. 

Zeros of the Discrete-Time Transfer Function from Excitation 

to Acceleration: Double Integrator 

Let 

A = 
0 1 

0 0 
, B = 

0 

1/m 
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c = 0 0 , and D = 1/m, where m > 0. Hence, 

1 h 

0 1 
, B = 

h2 

2m 

A 
m 

Then the zeros of the discrete-time transfer function from u to y are given by the 

roots of C adj (zl — A) B + D det (zl — A). Hence, both zeros occur at z = 1. 

Zeros of the Discrete-Time Transfer Function from Excitation 

to Acceleration: Damped Rigid Body 

Let 

A = 
0 1 

0 c 
, B = 

0 

1/m 

c = 0 c , and Z) = 1/m. Hence, 

A = 
1 

0 

e c f l - l 
c B = 

ech-ch-l 
mc2 

ech_1 

Then the zeros of the discrete-time transfer function from u to y are given by the 

roots of C adj (zl — A) B + D det (zl — A). Hence, both zeros occur at z = 1. 
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Zeros of the Discrete-Time Transfer Function from Excitation 

to Acceleration: Undamped Oscillator 

Let 

A = 
0 1 

-k 0 
, B = 

0 

1/m 

c = -k 0 , and D = 1/m, where k > 0. Hence, 

A = 
I sin(Vkh) cos(Vkh) 

-sqrtksin(y/kh) cos(y/kh) 

l—cos(Vkh) 
km 

sin(\/kh) 
Vkm 

Then the zeros of the discrete-time transfer function from u to y are given by the 

roots of C adj {zl — A) B + D det {zl — A). Hence, the zeros occur at 

z = l,cos(Vkh). 

We note that both zeros do not occur at z = 1. 
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